Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stages of memory described in new study

09.10.2003


A new study in the Oct. 9 issue of the journal Nature describes three distinct stages in the life of a memory, and helps explain how memories endure – or are forgotten – including the role that sleep plays in safeguarding memories.



"To initiate a memory is almost like creating a word processing file on a computer," explains the study’s first author, Matthew Walker, Ph.D., instructor of psychiatry at Beth Israel Deaconess Medical Center and Harvard Medical School. "Once the file has been created, if you don’t hit the ’save’ button before shutting off the computer it will be lost. Our new research helps explain the process in our brains that enable us to first create the memories and then to stabilize and ’save’ the memories we’ve created." The findings then go on to explain how memories can later be "edited" once they’ve been saved.

Walker, who conducted the research while at the Massachusetts Mental Health Center, and his colleagues focused on "procedural skill memory," the "how" type of memory that enables humans to learn coordination-based skills, such as driving, playing a sport, or learning to play a musical instrument or perform a surgical procedure. "This is the type of memory that we often take for granted," says Walker. "But for stroke patients or other individuals who have suffered neurological damage that has injured their motor skills functioning – including how they speak and how they move – it quickly becomes apparent how critically important this type of memory is to our daily existence." To identify these three stages of memory, the authors instructed a group of individuals (100 young healthy subjects, ages 18 to 27) in several different finger-tapping sequences (for example, 4,1,2,3,4) at various intervals and at various points of the sleep-wake cycle. Their resulting data disclosed several important findings, according to Walker.


"We first discovered that in order for a memory to be stabilized – and therefore become less vulnerable to competing information – it requires somewhere in the region of six waking hours," he explains. "So, this is when your brain is hitting the ’save’ key and putting the file on the ’hard drive,’ but instead of being saved in a matter of seconds like your computer file, a memory needs several hours to be saved."

From there, the researchers went on to discover that the second stage of memory processing occurs during sleep – and that it is "absolutely dependent on sleep in order to occur," according to Walker. Study subjects who were tested 24 hours after their finger-tapping lesson – and following a night’s sleep – were found to have improved or enhanced memory from the previous day. "In keeping with the computer file analogy," says Walker, "this stage of memory would be comparable to an editor coming in and opening a stable but messy file, and reorganizing it, refining it and tightening it up." Furthermore, he explains, this discovery helps strengthen the argument that sleep is beneficial to the learning process. "If you don’t get that full night’s sleep, you may be shortchanging your brain of learning potential," he adds.

The final stage of memory identified by Walker and his colleagues is the "recall phase," which allows a previously stabilized memory to be modified. "What we found was that after the memory had been stabilized [after several waking hours] and enhanced [after a night’s sleep] it once again became pliable so that it could be altered in the context of new ongoing experiences." In other words, although an individual may have learned to play a piano scale, then enhanced the skill after a night of sleep, by way of this third modifying stage of memory he could continue to tweak and refine this new skill.

This last stage may have important clinical implications in the treatment of patients with psychological disorders such as post-traumatic stress disorder (PTSD), says Walker. "In PTSD, individuals have specific memories with specific associations attached to them, which are negative, and thereby causing the disorder," he explains . "What we think behavioral and cognitive therapies do by having patients replay those memories and talk about them is that exact third memory stage. Over time, there may be the chance for these patients to redefine their memories and make them less traumatic."



This study was supported by grants from the National Science Foundation and the National Institute of Mental Health.

Study co-authors include Harvard Medical School researchers Robert Stickgold, PhD, of Beth Israel Deaconess Medical Center, formerly of the Massachusetts Mental Health Center; and J. Allan Hobson, MD, and Tiffany Brafkefield, BA, of the Massachusetts Mental Health Center. Beth Israel Deaconess Medical Center is a major patient care, teaching and research affiliate of Harvard Medical School, ranking third in National Institutes of Health funding among independent hospitals nationwide. The medical center is clinically affiliated with the Joslin Diabetes Center and is a founding member of the Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu/

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>