Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Illinois study seeking biomarkers of canine diabetes, other diseases

07.10.2003


Even as the genetic blueprint for Shadow the poodle was being completed in Maryland, researchers at the University of Illinois at Urbana-Champaign had been engaged in a long-term study that they hope will add functional gene information to the dog genome as well as benefit both canine and human health.



The still-in-progress Illinois study, in which researchers are measuring the effects of diet on gene expression in both weanling and geriatric dogs, is described in a paper in the October issue of the Journal of Nutrition. The scientists use their study as an example of how the use of emerging molecular tools, in general, will unlock the functional aspects of the genes being mapped in a variety of genomes.

"Genome sequencing allows us to understand health across animals," said Lawrence B. Schook, a professor of animal sciences and veterinary pathobiology at Illinois. "Dogs, like humans, get diseases associated with lifestyles. Thus not exercising and over-eating can result in obesity and diabetes. Information about human diseases can be used to treat dogs, and understanding dog diseases can be used to treat humans."


The dog-human bond goes deeper than mutual admiration. In a paper published last month in Science, researchers at the Institute for Genomic Research in Maryland scientists reported that their genome map of Shadow reveals 18,473 genes that correspond to the 24,567 annotated human genes. They also noted that the dog’s genome had more genetic similarities with humans than does the mouse -- the most-often used mammal for human health studies.

Schook and colleagues say in their paper that the cat-genome map available to date is even more similar to humans genetically than the dog. To date, Schook said, 263 feline and 451 canine genetic diseases have been identified.

Causes for diseases associated with a single gene can be uncovered with current biological techniques, Schook said, but finding the source of diseases associated with multiple genes "is a much more daunting task."

The emergence of mammal genomes provides fundamental gene-placement information, but now researchers are able to pursue functional genomics to unlock the mysteries of RNA and protein expression. Such research, Schook and colleagues write, will enhance our knowledge of metabolism and improve companion animal nutrition and health.

The dog, they say, "may be a very useful model, as many of the most common diseases of purebred dogs are also major health concerns in humans." They cite arthritis, cancer, deafness, heart disease, blindness, epilepsy and chronic metabolic diseases.

In the Illinois study, a diet of mostly high-quality animal-based ingredients is being compared with a mainly plant-based diet. Researchers are analyzing ribonucleic acid (RNA) samples to generate gene expression profiles of some 384 genes associated with metabolism and immune function. They also are monitoring digestion, fetal microbes and concentrations of fermented end products to measure the effects of dietary changes.

Illinois scientists hope the project will identify biomarkers that can predict diabetes, a disease that is appearing among the 40 percent of aging overweight dogs and cats in the United States, and other medical issues.

The general study of metabolic profiles of cells, tissues and organisms is designed to identify molecular markers that reflect nutritional and/or health status. Eventually, Schook said, such studies could result in animal feed that includes functional ingredients to help prevent and treat diseases in general or to target breed-specific genetic problems.

Schook’s collaborators are George Fahey, professor of animal sciences, and Kelly Swanson, a postdoctoral fellow in animal sciences. Pyxis Genomics of Chicago supports their research. Schook is a member of the board of directors of the privately held company that focuses on genetic research on natural disease resistance in food animals, preventive medicine for dogs and cats, food safety and security, and human therapeutics.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>