Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical change may help predict seriousness and course of some cancer

06.10.2003


A pattern produced by a chemical change that turns off genes in tumor cells may help predict the seriousness of a particular cancer, and perhaps its outcome.



The study by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute examined how a chemical change known as methylation spreads from one region of a breast-cancer gene to a neighboring region in tumor cells taken from patients.

The findings provide insight into how the methylation process progresses until it inactivates genes such as tumor suppressor genes that otherwise help protect against cancer. The findings are published in the Oct. 1 issue of the journal Cancer Research.


“Methylation is as important as gene mutations and chromosomal damage in the cancer process,” says principal investigator Tim Hui-Ming Huang, associate professor of human cancer genetics.

“Our findings suggest that the degree of methylation may correlate with the seriousness of the tumor. If that proves to be true, it would have important implications for cancer diagnosis and predicting a patient’s prognosis.”

Methylation is the addition of small chemical units known as methyl groups to DNA. Cells normally use methylation to inactivate unneeded genes during embryonic development and throughout life. Abnormal methylation, however, occurs in many types of cancers.

The investigators developed microarray technology to measure methylation levels along two regions of a gene known as RASSF1A, which becomes highly methylated in many kinds of cancer. Microarray technology allows researchers to measure changes in genes from many different tumors simultaneously.

The researchers examined the methylation profiles of RASSF1A genes taken from 37 primary breast tumors, seven breast-cancer cell lines and 10 samples of normal breast tissue.

Specifically, they measured methylation levels at 19 sites spanning two adjoining regions of the gene: the promoter region, which regulates the activity of the gene, and the neighboring first exon. Exons are stretches of DNA that contain the information for the protein described by the gene.

Genes from the normal breast cells showed low to moderate methylation in the exon and little or no methylation in the promoter. Nearly one-third of breast tumors sampled also showed low levels of methylation in the promoter region.

The remaining tumor cells and all the breast-cancer cell lines, however, showed moderate to high levels of methylation in the exon and various degrees of methylation in the promoter.

High levels of promoter methylation correlate with an altered structure of the gene, resulting in a tightly closed DNA configuration that prevents gene activation.

“Our findings show that progressive methylation occurs in tumors from patients and support the idea that methylation begins in the exons and extends into the promoter,” Huang says.

Huang and his colleagues are now working to correlate methylation patterns in leukemia and ovarian and lung cancer with the behavior and severity of the disease. Grants from the National Cancer Institute supported this research.

Darrell E. Ward | Ohio State University
Further information:
http://researchnews.osu.edu/archive/methcanc.htm

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel 3-D printing technique yields high-performance composites

16.01.2018 | Materials Sciences

New application for acoustics helps estimate marine life populations

16.01.2018 | Life Sciences

Fast-tracking T cell therapies with immune-mimicking biomaterials

16.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>