Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical change may help predict seriousness and course of some cancer

06.10.2003


A pattern produced by a chemical change that turns off genes in tumor cells may help predict the seriousness of a particular cancer, and perhaps its outcome.



The study by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute examined how a chemical change known as methylation spreads from one region of a breast-cancer gene to a neighboring region in tumor cells taken from patients.

The findings provide insight into how the methylation process progresses until it inactivates genes such as tumor suppressor genes that otherwise help protect against cancer. The findings are published in the Oct. 1 issue of the journal Cancer Research.


“Methylation is as important as gene mutations and chromosomal damage in the cancer process,” says principal investigator Tim Hui-Ming Huang, associate professor of human cancer genetics.

“Our findings suggest that the degree of methylation may correlate with the seriousness of the tumor. If that proves to be true, it would have important implications for cancer diagnosis and predicting a patient’s prognosis.”

Methylation is the addition of small chemical units known as methyl groups to DNA. Cells normally use methylation to inactivate unneeded genes during embryonic development and throughout life. Abnormal methylation, however, occurs in many types of cancers.

The investigators developed microarray technology to measure methylation levels along two regions of a gene known as RASSF1A, which becomes highly methylated in many kinds of cancer. Microarray technology allows researchers to measure changes in genes from many different tumors simultaneously.

The researchers examined the methylation profiles of RASSF1A genes taken from 37 primary breast tumors, seven breast-cancer cell lines and 10 samples of normal breast tissue.

Specifically, they measured methylation levels at 19 sites spanning two adjoining regions of the gene: the promoter region, which regulates the activity of the gene, and the neighboring first exon. Exons are stretches of DNA that contain the information for the protein described by the gene.

Genes from the normal breast cells showed low to moderate methylation in the exon and little or no methylation in the promoter. Nearly one-third of breast tumors sampled also showed low levels of methylation in the promoter region.

The remaining tumor cells and all the breast-cancer cell lines, however, showed moderate to high levels of methylation in the exon and various degrees of methylation in the promoter.

High levels of promoter methylation correlate with an altered structure of the gene, resulting in a tightly closed DNA configuration that prevents gene activation.

“Our findings show that progressive methylation occurs in tumors from patients and support the idea that methylation begins in the exons and extends into the promoter,” Huang says.

Huang and his colleagues are now working to correlate methylation patterns in leukemia and ovarian and lung cancer with the behavior and severity of the disease. Grants from the National Cancer Institute supported this research.

Darrell E. Ward | Ohio State University
Further information:
http://researchnews.osu.edu/archive/methcanc.htm

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>