Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical change may help predict seriousness and course of some cancer

06.10.2003


A pattern produced by a chemical change that turns off genes in tumor cells may help predict the seriousness of a particular cancer, and perhaps its outcome.



The study by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute examined how a chemical change known as methylation spreads from one region of a breast-cancer gene to a neighboring region in tumor cells taken from patients.

The findings provide insight into how the methylation process progresses until it inactivates genes such as tumor suppressor genes that otherwise help protect against cancer. The findings are published in the Oct. 1 issue of the journal Cancer Research.


“Methylation is as important as gene mutations and chromosomal damage in the cancer process,” says principal investigator Tim Hui-Ming Huang, associate professor of human cancer genetics.

“Our findings suggest that the degree of methylation may correlate with the seriousness of the tumor. If that proves to be true, it would have important implications for cancer diagnosis and predicting a patient’s prognosis.”

Methylation is the addition of small chemical units known as methyl groups to DNA. Cells normally use methylation to inactivate unneeded genes during embryonic development and throughout life. Abnormal methylation, however, occurs in many types of cancers.

The investigators developed microarray technology to measure methylation levels along two regions of a gene known as RASSF1A, which becomes highly methylated in many kinds of cancer. Microarray technology allows researchers to measure changes in genes from many different tumors simultaneously.

The researchers examined the methylation profiles of RASSF1A genes taken from 37 primary breast tumors, seven breast-cancer cell lines and 10 samples of normal breast tissue.

Specifically, they measured methylation levels at 19 sites spanning two adjoining regions of the gene: the promoter region, which regulates the activity of the gene, and the neighboring first exon. Exons are stretches of DNA that contain the information for the protein described by the gene.

Genes from the normal breast cells showed low to moderate methylation in the exon and little or no methylation in the promoter. Nearly one-third of breast tumors sampled also showed low levels of methylation in the promoter region.

The remaining tumor cells and all the breast-cancer cell lines, however, showed moderate to high levels of methylation in the exon and various degrees of methylation in the promoter.

High levels of promoter methylation correlate with an altered structure of the gene, resulting in a tightly closed DNA configuration that prevents gene activation.

“Our findings show that progressive methylation occurs in tumors from patients and support the idea that methylation begins in the exons and extends into the promoter,” Huang says.

Huang and his colleagues are now working to correlate methylation patterns in leukemia and ovarian and lung cancer with the behavior and severity of the disease. Grants from the National Cancer Institute supported this research.

Darrell E. Ward | Ohio State University
Further information:
http://researchnews.osu.edu/archive/methcanc.htm

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>