Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biological basis for creativity linked to mental illness

01.10.2003


Creative people more open to stimuli from environment



Psychologists from U of T and Harvard University have identified one of the biological bases of creativity

The study in the September issue of the Journal of Personality and Social Psychology says the brains of creative people appear to be more open to incoming stimuli from the surrounding environment. Other people’s brains might shut out this same information through a process called "latent inhibition" - defined as an animal’s unconscious capacity to ignore stimuli that experience has shown are irrelevant to its needs. Through psychological testing, the researchers showed that creative individuals are much more likely to have low levels of latent inhibition.


"This means that creative individuals remain in contact with the extra information constantly streaming in from the environment," says co-author and U of T psychology professor Jordan Peterson. "The normal person classifies an object, and then forgets about it, even though that object is much more complex and interesting than he or she thinks. The creative person, by contrast, is always open to new possibilities."

Previously, scientists have associated failure to screen out stimuli with psychosis. However, Peterson and his co-researchers - lead author and psychology lecturer Shelley Carson of Harvard University’s Faculty of Arts and Sciences and Harvard PhD candidate Daniel Higgins - hypothesized that it might also contribute to original thinking, especially when combined with high IQ. They administered tests of latent inhibition to Harvard undergraduates. Those classified as eminent creative achievers - participants under age 21 who reported unusually high scores in a single area of creative achievement - were seven times more likely to have low latent inhibition scores.

The authors hypothesize that latent inhibition may be positive when combined with high intelligence and good working memory - the capacity to think about many things at once - but negative otherwise. Peterson states: "If you are open to new information, new ideas, you better be able to intelligently and carefully edit and choose. If you have 50 ideas, only two or three are likely to be good. You have to be able to discriminate or you’ll get swamped."


"Scientists have wondered for a long time why madness and creativity seem linked," says Carson. "It appears likely that low levels of latent inhibition and exceptional flexibility in thought might predispose to mental illness under some conditions and to creative accomplishment under others."

For example, during the early stages of diseases such as schizophrenia, which are often accompanied by feelings of deep insight, mystical knowledge and religious experience, chemical changes take place in which latent inhibition disappears.

"We are very excited by the results of these studies," says Peterson. "It appears that we have not only identified one of the biological bases of creativity but have moved towards cracking an age-old mystery: the relationship between genius, madness and the doors of perception."

This research was funded by the Stimson Fund and the Clark Fund at Harvard University and by the Connaught Fund at U of T.


Jessica Whiteside is a news services officer with the department of public affairs.

CONTACT:

Jordan B. Peterson, U of T Department of Psychology, ph: (416) 978-7619; email: jbpeterson@psych.utoronto.ca

Shelley Carson, Harvard Department of Psychology, ph: (617) 496-3646; email: carson@wjh.harvard.edu


U of T Public Affairs, ph: (416) 978-5948; email: jessica.whiteside@utoronto.ca

Jessica Whiteside | U of T
Further information:
http://www.newsandevents.utoronto.ca/bin5/030930b.asp

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>