Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


‘Good’ chemical, neurons in brain elevated among exercise addicts


Exercise enthusiasts have more reasons to put on their running shoes in the morning, but an Oregon Health & Science University scientist says they shouldn’t step up their work-outs just yet.

A study published today in the journal Neuroscience, journal of the International Brain Research Organization, confirmed that exercise increases the chemical BDNF – brain-derived neurotrophic factor – in the hippocampus, a curved, elongated ridge in the brain that controls learning and memory. BDNF is involved in protecting and producing neurons in the hippocampus.

"When you exercise, it’s been shown you release BDNF," said study co-author Justin Rhodes, Ph.D., a postdoctoral fellow in the Department of Behavioral Neuroscience at OHSU’s School of Medicine and at the Veterans Administration Medical Center in Portland. "BDNF helps support and strengthen synapses in the brain. We find that exercise increases these good things."

Mice bred for 30 generations to display increased voluntary wheel running behavior – an "exercise addiction" – showed higher amounts of BDNF than normal, sedentary mice. In fact, the BDNF concentration in the active mice increased by as much as 171 percent after seven nights of wheel running.

"These mice are more active than wild mice," Rhodes said, referring to the mice as small and lean, and seemingly "addicted" to exercise. "Wheel running causes a huge amount of activity in the hippocampus. The more running, the more BDNF."

In a study Rhodes also co-authored that extends these findings, to be published in the October edition of the American Psychological Association journal Behavioral Neuroscience, scientists demonstrated that not only do the mice display more of this "good" BDNF chemical in the hippocampus, they grow more neurons there as well.

But those high levels of BDNF and neurogenesis don’t necessarily mean an exercise addict learns at a faster rate, Rhodes said. According to the Behavioral Neuroscience study, the running addict, compared with the normal-running, control mice, perform "terribly" when attempting to navigate around a maze.

"These studies are focusing on the effects of exercise itself on chemicals known to protect and strengthen synapses," Rhodes explained. "But too much of it is not necessarily a good thing."

High runners tend to "max out" in the production of the BDNF and neurogenesis, Rhodes said. And that topping-out effect may be what prevents learning.

A high-running mouse’s inability to learn as well as a normal mouse could be due to less biological reasons, Rhodes points out. "It is possible that they’re so focused on running, they can’t think of anything else," he said.

Rhodes and colleagues at the University of Wisconsin at Madison, the University of California at Riverside and The Salk Institute also emphasize that the functional significance of the exercise-induced increases in BDNF and neurogenesis is not known.

Rhodes suggests that when a high-running mouse exercises, stress is placed on its hippocampus and the development of new neurons becomes a protective response. No one has yet tested whether hyperactive wheel running exercise actually kills or damages neurons in the hippocampus, he said.

"The reason why these good things are happening is they may clean up some of the mess," he said. "Knowing that, you wouldn’t expect high runners to get any benefit from it."

One thing is clear: Exercise greatly activates the hippocampus. Rhodes and his colleagues have conducted research that also shows the intensity of exercise is linearly related to the number of neurons that are activated in a subregion of the hippocampus called the dentate gyrus.

In addition, they have demonstrated that when mice are kept from their normal running routine, brain regions involved in craving for natural rewards such as food, sex and drugs of abuse become activated. It is allowing Rhodes to study the relationship between natural craving, like hunger, and drug craving due to a pathological addiction.

"The point is to characterize what makes drug craving different from natural craving at the level of the genes and neuronal substrates involved so that, eventually, a pharmaceutical therapy can be designed to target the pathology," Rhodes said.

Jonathan Modie | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>