Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel proteins designed that block inflammation regulator associated with rheumatoid arthritis

26.09.2003


Researchers at UT Southwestern Medical Center at Dallas have tested and validated novel proteins, created by California-based Xencor, that block activity of a major molecule involved in the onset of inflammation, an innovation that may translate into new therapeutic options for people with rheumatoid arthritis.



Researchers at both institutions report in today’s issue of Science that blocking the activation of a regulator of inflammation called tumor necrosis factor (TNF) decreased swelling by 25 percent in a rodent model of the human disease rheumatoid arthritis. Elevated TNF levels are associated with the onset of rheumatoid arthritis.

The uniqueness of the new inhibitors, the scientific team reports, lies in their design and mode of action. Unlike the drugs that are currently available, the structure and sequence of these newly designed molecules are similar to naturally produced proteins, making it less likely that the body will elicit an immune response to fight off foreign agents.


"What we’ve engineered are variant proteins that are very similar to the protein that the body expresses on its own, which makes it less likely that the body will see it as foreign," said Dr. Malú Tansey, a lead author of the study and assistant professor of physiology at UT Southwestern, where some of the in vivo testing and validation was completed and where work will continue on these TNF inhibitors.

"The inhibitors are actually modified versions of the TNF protein that is naturally found in the body, but with a few mutations that prevent them from binding to receptors but still allow the proteins to bind TNF. The end result is sequestration of active TNF away from the receptors that mediate inflammatory responses implicated in rheumatoid arthritis and several other autoimmune diseases," said Dr. Tansey, former member of the Xencor team.

These findings provide a "promising new avenue" for physicians who treat the 2.1 million Americans with rheumatoid arthritis, said Dr. David Karp, chief of rheumatic diseases and associate director of the Harold C. Simmons Arthritis Research Center.

"This is a very novel approach; one that has not been looked at by other investigators," he said. "This family of proteins is not only implicated in the painful inflammation of rheumatoid arthritis, but also the joint destruction that accompanies the disease. These proteins also may be critical for other autoimmune diseases like multiple sclerosis and systemic lupus erythematosis."

Rheumatoid arthritis is an autoimmune disease in which the body’s immune system attacks its own tissues, mistaking them for foreign substances like bacteria or viruses. This disease is characterized by redness, swelling, loss of joint function and deterioration of cartilage and bone in the joints.

There is no cure for the disease, but there are currently three drugs that specifically target TNF inhibition. Although these drugs have been shown to be effective in decreasing the pain associated with the disease and in some cases joint destruction, some patients develop antibodies against the drugs, which may require the administration of higher doses.

"This side effect may lower the effectiveness of these drugs," Dr. Tansey said. "Our prediction is that because these TNF variants are virtually identical to native TNF, the body will not form antibodies against them, but this will have to be tested."

The TNF variants are currently in preclinical development at Xencor.

Anti-TNF therapy may also be useful in blocking inflammation in neurodegenerative diseases like Alzheimer’s and Parkinson’s disease, Dr. Tansey said.

Dr. Tansey recently received a $200,000 grant from the Michael J. Fox Foundation to examine the role that elevated levels of TNF play in the loss of dopamine-producing neurons, which lead to Parkinson’s disease.

Other researchers who contributed to this study include Sabrina Martinez, a research technician II in physiology at UT Southwestern.

The study was funded by Xencor, a private biotechnology company founded in 1997.

Amy Shields | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>