Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel proteins designed that block inflammation regulator associated with rheumatoid arthritis

26.09.2003


Researchers at UT Southwestern Medical Center at Dallas have tested and validated novel proteins, created by California-based Xencor, that block activity of a major molecule involved in the onset of inflammation, an innovation that may translate into new therapeutic options for people with rheumatoid arthritis.



Researchers at both institutions report in today’s issue of Science that blocking the activation of a regulator of inflammation called tumor necrosis factor (TNF) decreased swelling by 25 percent in a rodent model of the human disease rheumatoid arthritis. Elevated TNF levels are associated with the onset of rheumatoid arthritis.

The uniqueness of the new inhibitors, the scientific team reports, lies in their design and mode of action. Unlike the drugs that are currently available, the structure and sequence of these newly designed molecules are similar to naturally produced proteins, making it less likely that the body will elicit an immune response to fight off foreign agents.


"What we’ve engineered are variant proteins that are very similar to the protein that the body expresses on its own, which makes it less likely that the body will see it as foreign," said Dr. Malú Tansey, a lead author of the study and assistant professor of physiology at UT Southwestern, where some of the in vivo testing and validation was completed and where work will continue on these TNF inhibitors.

"The inhibitors are actually modified versions of the TNF protein that is naturally found in the body, but with a few mutations that prevent them from binding to receptors but still allow the proteins to bind TNF. The end result is sequestration of active TNF away from the receptors that mediate inflammatory responses implicated in rheumatoid arthritis and several other autoimmune diseases," said Dr. Tansey, former member of the Xencor team.

These findings provide a "promising new avenue" for physicians who treat the 2.1 million Americans with rheumatoid arthritis, said Dr. David Karp, chief of rheumatic diseases and associate director of the Harold C. Simmons Arthritis Research Center.

"This is a very novel approach; one that has not been looked at by other investigators," he said. "This family of proteins is not only implicated in the painful inflammation of rheumatoid arthritis, but also the joint destruction that accompanies the disease. These proteins also may be critical for other autoimmune diseases like multiple sclerosis and systemic lupus erythematosis."

Rheumatoid arthritis is an autoimmune disease in which the body’s immune system attacks its own tissues, mistaking them for foreign substances like bacteria or viruses. This disease is characterized by redness, swelling, loss of joint function and deterioration of cartilage and bone in the joints.

There is no cure for the disease, but there are currently three drugs that specifically target TNF inhibition. Although these drugs have been shown to be effective in decreasing the pain associated with the disease and in some cases joint destruction, some patients develop antibodies against the drugs, which may require the administration of higher doses.

"This side effect may lower the effectiveness of these drugs," Dr. Tansey said. "Our prediction is that because these TNF variants are virtually identical to native TNF, the body will not form antibodies against them, but this will have to be tested."

The TNF variants are currently in preclinical development at Xencor.

Anti-TNF therapy may also be useful in blocking inflammation in neurodegenerative diseases like Alzheimer’s and Parkinson’s disease, Dr. Tansey said.

Dr. Tansey recently received a $200,000 grant from the Michael J. Fox Foundation to examine the role that elevated levels of TNF play in the loss of dopamine-producing neurons, which lead to Parkinson’s disease.

Other researchers who contributed to this study include Sabrina Martinez, a research technician II in physiology at UT Southwestern.

The study was funded by Xencor, a private biotechnology company founded in 1997.

Amy Shields | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>