Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel proteins designed that block inflammation regulator associated with rheumatoid arthritis

26.09.2003


Researchers at UT Southwestern Medical Center at Dallas have tested and validated novel proteins, created by California-based Xencor, that block activity of a major molecule involved in the onset of inflammation, an innovation that may translate into new therapeutic options for people with rheumatoid arthritis.



Researchers at both institutions report in today’s issue of Science that blocking the activation of a regulator of inflammation called tumor necrosis factor (TNF) decreased swelling by 25 percent in a rodent model of the human disease rheumatoid arthritis. Elevated TNF levels are associated with the onset of rheumatoid arthritis.

The uniqueness of the new inhibitors, the scientific team reports, lies in their design and mode of action. Unlike the drugs that are currently available, the structure and sequence of these newly designed molecules are similar to naturally produced proteins, making it less likely that the body will elicit an immune response to fight off foreign agents.


"What we’ve engineered are variant proteins that are very similar to the protein that the body expresses on its own, which makes it less likely that the body will see it as foreign," said Dr. Malú Tansey, a lead author of the study and assistant professor of physiology at UT Southwestern, where some of the in vivo testing and validation was completed and where work will continue on these TNF inhibitors.

"The inhibitors are actually modified versions of the TNF protein that is naturally found in the body, but with a few mutations that prevent them from binding to receptors but still allow the proteins to bind TNF. The end result is sequestration of active TNF away from the receptors that mediate inflammatory responses implicated in rheumatoid arthritis and several other autoimmune diseases," said Dr. Tansey, former member of the Xencor team.

These findings provide a "promising new avenue" for physicians who treat the 2.1 million Americans with rheumatoid arthritis, said Dr. David Karp, chief of rheumatic diseases and associate director of the Harold C. Simmons Arthritis Research Center.

"This is a very novel approach; one that has not been looked at by other investigators," he said. "This family of proteins is not only implicated in the painful inflammation of rheumatoid arthritis, but also the joint destruction that accompanies the disease. These proteins also may be critical for other autoimmune diseases like multiple sclerosis and systemic lupus erythematosis."

Rheumatoid arthritis is an autoimmune disease in which the body’s immune system attacks its own tissues, mistaking them for foreign substances like bacteria or viruses. This disease is characterized by redness, swelling, loss of joint function and deterioration of cartilage and bone in the joints.

There is no cure for the disease, but there are currently three drugs that specifically target TNF inhibition. Although these drugs have been shown to be effective in decreasing the pain associated with the disease and in some cases joint destruction, some patients develop antibodies against the drugs, which may require the administration of higher doses.

"This side effect may lower the effectiveness of these drugs," Dr. Tansey said. "Our prediction is that because these TNF variants are virtually identical to native TNF, the body will not form antibodies against them, but this will have to be tested."

The TNF variants are currently in preclinical development at Xencor.

Anti-TNF therapy may also be useful in blocking inflammation in neurodegenerative diseases like Alzheimer’s and Parkinson’s disease, Dr. Tansey said.

Dr. Tansey recently received a $200,000 grant from the Michael J. Fox Foundation to examine the role that elevated levels of TNF play in the loss of dopamine-producing neurons, which lead to Parkinson’s disease.

Other researchers who contributed to this study include Sabrina Martinez, a research technician II in physiology at UT Southwestern.

The study was funded by Xencor, a private biotechnology company founded in 1997.

Amy Shields | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>