Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving the mystery of musical harmony

06.08.2003


For over two thousand years, musicians and scientists have puzzled over why some combinations of musical tones played together sound more harmonious than others. Now, Duke University perception scientists David Schwartz, Catherine Howe and Dale Purves have presented evidence that variation in the relative harmoniousness, or "consonance," of different tone combinations arises from people´s exposure to the acoustical characteristics of speech sounds. Schwartz and Howe are postdoctoral fellows, and Purves is Director of the Center for Cognitive Neuroscience and the George B. Geller Professor of Neurobiology.



The researchers said that their findings, reported in the Aug. 6, 2003, issue of the Journal of Neuroscience, constitute an important advance in understanding the biological basis of music perception. The work also extends to hearing the theoretical framework about brain organization that Purves and his colleagues developed in earlier work on visual perception.

Those studies of vision led to the idea that evolution -- as well as individual experience during development -- created a visual system in which perceptions are determined by what a given visual stimulus has typically signified in the past, rather than simply representing to an observer what is presently `out there.´ That work is summarized in a new book entitled Why We See What We Do (Sinauer Associates, 2003).


In their Journal of Neuroscience paper, the neurobiologists present a statistical analysis of the patterns of frequency and amplitude in human speech sounds, based on a collection of recorded utterances spoken by more than 500 people. They found that the points at which sound energy is concentrated in the speech spectrum predict the chromatic scale -- the scale represented by the keys on a piano keyboard. Moreover, the difference in the amount of sound energy concentrated at these points predicts the relative consonance of different chromatic scale tone combinations.

These results suggest that certain pairs of tones sound more harmonious than others because they are physically similar to the patterns of sound energy most familiar to human listeners from their exposure to speech, said the researchers.

In deciding to analyze speech as a natural basis for tone perception, the researchers were faced with a very different challenge from that of exploring visual perception. In the work on vision, Purves and his colleagues concentrated on analyzing the perception of visual illusions.

"After studying the research literature on psychoacoustics, we discovered several phenomena in tone perception that, despite having been investigated for decades, remained unexplained," said Schwartz. "Our general framework is that the way to understand why somebody perceives anything the way they do -- whether the stimulus is light or sound-- is to consider the possible real world events that could have given rise to that particular stimulus.

"This work on music perception represents a natural extension of the work on visual perception," said Howe. "Hearing presents many of the same challenges as vision, in that the physical world cannot be known directly; we only know about objects in the environment because of the energy associated with them, such as light waves or sound waves.

"Determining the actual state of the environment on the basis of this indirect information available to our senses is a real challenge. The solution we have evolved is evidently to respond to ambiguous optical and acoustical stimuli by taking account of the statistical relationship between stimuli and their sources. That seems to be the reason we hear music the way we do."

Contact: Dennis Meredith, dennis.meredith@duke.edu

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>