Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Solving the mystery of musical harmony


For over two thousand years, musicians and scientists have puzzled over why some combinations of musical tones played together sound more harmonious than others. Now, Duke University perception scientists David Schwartz, Catherine Howe and Dale Purves have presented evidence that variation in the relative harmoniousness, or "consonance," of different tone combinations arises from people´s exposure to the acoustical characteristics of speech sounds. Schwartz and Howe are postdoctoral fellows, and Purves is Director of the Center for Cognitive Neuroscience and the George B. Geller Professor of Neurobiology.

The researchers said that their findings, reported in the Aug. 6, 2003, issue of the Journal of Neuroscience, constitute an important advance in understanding the biological basis of music perception. The work also extends to hearing the theoretical framework about brain organization that Purves and his colleagues developed in earlier work on visual perception.

Those studies of vision led to the idea that evolution -- as well as individual experience during development -- created a visual system in which perceptions are determined by what a given visual stimulus has typically signified in the past, rather than simply representing to an observer what is presently `out there.´ That work is summarized in a new book entitled Why We See What We Do (Sinauer Associates, 2003).

In their Journal of Neuroscience paper, the neurobiologists present a statistical analysis of the patterns of frequency and amplitude in human speech sounds, based on a collection of recorded utterances spoken by more than 500 people. They found that the points at which sound energy is concentrated in the speech spectrum predict the chromatic scale -- the scale represented by the keys on a piano keyboard. Moreover, the difference in the amount of sound energy concentrated at these points predicts the relative consonance of different chromatic scale tone combinations.

These results suggest that certain pairs of tones sound more harmonious than others because they are physically similar to the patterns of sound energy most familiar to human listeners from their exposure to speech, said the researchers.

In deciding to analyze speech as a natural basis for tone perception, the researchers were faced with a very different challenge from that of exploring visual perception. In the work on vision, Purves and his colleagues concentrated on analyzing the perception of visual illusions.

"After studying the research literature on psychoacoustics, we discovered several phenomena in tone perception that, despite having been investigated for decades, remained unexplained," said Schwartz. "Our general framework is that the way to understand why somebody perceives anything the way they do -- whether the stimulus is light or sound-- is to consider the possible real world events that could have given rise to that particular stimulus.

"This work on music perception represents a natural extension of the work on visual perception," said Howe. "Hearing presents many of the same challenges as vision, in that the physical world cannot be known directly; we only know about objects in the environment because of the energy associated with them, such as light waves or sound waves.

"Determining the actual state of the environment on the basis of this indirect information available to our senses is a real challenge. The solution we have evolved is evidently to respond to ambiguous optical and acoustical stimuli by taking account of the statistical relationship between stimuli and their sources. That seems to be the reason we hear music the way we do."

Contact: Dennis Meredith,

Dennis Meredith | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>