Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving the mystery of musical harmony

06.08.2003


For over two thousand years, musicians and scientists have puzzled over why some combinations of musical tones played together sound more harmonious than others. Now, Duke University perception scientists David Schwartz, Catherine Howe and Dale Purves have presented evidence that variation in the relative harmoniousness, or "consonance," of different tone combinations arises from people´s exposure to the acoustical characteristics of speech sounds. Schwartz and Howe are postdoctoral fellows, and Purves is Director of the Center for Cognitive Neuroscience and the George B. Geller Professor of Neurobiology.



The researchers said that their findings, reported in the Aug. 6, 2003, issue of the Journal of Neuroscience, constitute an important advance in understanding the biological basis of music perception. The work also extends to hearing the theoretical framework about brain organization that Purves and his colleagues developed in earlier work on visual perception.

Those studies of vision led to the idea that evolution -- as well as individual experience during development -- created a visual system in which perceptions are determined by what a given visual stimulus has typically signified in the past, rather than simply representing to an observer what is presently `out there.´ That work is summarized in a new book entitled Why We See What We Do (Sinauer Associates, 2003).


In their Journal of Neuroscience paper, the neurobiologists present a statistical analysis of the patterns of frequency and amplitude in human speech sounds, based on a collection of recorded utterances spoken by more than 500 people. They found that the points at which sound energy is concentrated in the speech spectrum predict the chromatic scale -- the scale represented by the keys on a piano keyboard. Moreover, the difference in the amount of sound energy concentrated at these points predicts the relative consonance of different chromatic scale tone combinations.

These results suggest that certain pairs of tones sound more harmonious than others because they are physically similar to the patterns of sound energy most familiar to human listeners from their exposure to speech, said the researchers.

In deciding to analyze speech as a natural basis for tone perception, the researchers were faced with a very different challenge from that of exploring visual perception. In the work on vision, Purves and his colleagues concentrated on analyzing the perception of visual illusions.

"After studying the research literature on psychoacoustics, we discovered several phenomena in tone perception that, despite having been investigated for decades, remained unexplained," said Schwartz. "Our general framework is that the way to understand why somebody perceives anything the way they do -- whether the stimulus is light or sound-- is to consider the possible real world events that could have given rise to that particular stimulus.

"This work on music perception represents a natural extension of the work on visual perception," said Howe. "Hearing presents many of the same challenges as vision, in that the physical world cannot be known directly; we only know about objects in the environment because of the energy associated with them, such as light waves or sound waves.

"Determining the actual state of the environment on the basis of this indirect information available to our senses is a real challenge. The solution we have evolved is evidently to respond to ambiguous optical and acoustical stimuli by taking account of the statistical relationship between stimuli and their sources. That seems to be the reason we hear music the way we do."

Contact: Dennis Meredith, dennis.meredith@duke.edu

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>