Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Retinoids kill childhood brain tumor cells

06.08.2003


Previous Food and Drug Administration approval for use of retinoids to treat another form of childhood cancer, will mean clinical trials in pediatric medulloblastoma patients to begin with minimal delay



Researchers find that vitamin A derivatives may be highly effective and minimally toxic treatments for medulloblastoma, the most common form of childhood brain cancer. Clinical trials of the drugs, known as retinoids, are being planned for children who are at high risk for tumor relapse following standard therapy.

A study led by Fred Hutchinson researchers, Drs. Andrew Hallahan and James Olson showed that retinoids killed cancer cells from medulloblastoma tumors that had been surgically removed from patients as well as tumors that had been grafted onto mice. Through genome analysis, the scientists also identified a protein in medulloblastoma cells that is triggered by retinoids to initiate cell death, a finding that is likely to lead to the development of additional therapies for the disease. The study appears in the Aug. 3 issue of Nature Medicine.


Because retinoids already have received approval from the Food and Drug Administration for treatment of another childhood cancer, neuroblastoma, researchers expect that the drugs will enter clinical trials in pediatric medulloblastoma patients with minimal delay.

Medulloblastomas arise from primitive cells in the back of the brain, or cerebellum, a region important for motor control and spatial orientation. The disease primarily strikes children under the age of 7. Standard therapy, which includes surgical removal of the tumor followed by radiation and a year of chemotherapy, offers about a 70 percent chance of survival for children over age 3 who do not have recurrent cancer.

High-risk children, who include those under age 3 or who have recurrent disease, have a much lower chance of survival with standard therapy. For that reason-and because of the toxic side effects of radiation and chemotherapy in young children-scientists are eager to find new treatments.

According to Hallahan, retinoids could prove to be even more effective at treating medulloblastoma than neuroblastoma.

"These compounds work against neuroblastoma and other cancers because they trigger cells to differentiate (form specialized cells) and stop dividing," he said. "But we observed that when the compounds are applied to medulloblastoma tumors, a large percentage of cancer cells actually die."

Retinoids are molecules naturally produced by the human body, where they play a critical role in normal development by triggering primitive cells to become specialized cells characteristic of a particular tissue, such as nerve cells in the brain. Scientists also have created synthetic retinoids, which have proved to be effective against some tumors because they drive cancer cells from their relatively primitive, undifferentiated state into specialized cells that cease to divide.

Hallahan and colleagues examined the effect of three retinoids on medulloblastoma tumor specimens obtained from surgeries.

"Thanks to our colleagues at Children’s Hospital and Regional Medical Center in Seattle we were able to start our experiments right in the operating room by getting surgical sections that we could immediately put into culture medium," James Olson said. "This was a critical step because it was uncertain whether the available medulloblastoma cell lines (cells previously extracted from tumors and grown indefinitely in the laboratory) would accurately reflect the disease."

The experiment led to a surprising result, Hallahan said. "We began by looking for signs of differentiation, which is what we expected based on how the compounds affect neuroblastomas," he said. "About 5 to 10 percent of the medulloblastoma cells did differentiate. But what was immediately obvious to us was that there was a huge wave of cell death."

The researchers also found that mice transplanted with medulloblastoma tumors that were treated with retinoids developed tumors that were about a third of the size as those that grew on untreated mice.

To identify genes responsible for the cell death, researchers looked at patterns of gene expression in medulloblastoma cells that were exposed to retinoids compared to untreated cells. Using DNA microarrays, which permit the analysis of thousands of genes simultaneously, they identified common sets of genes that were turned on or off in response to treatment with each of the three compounds.

Among the genes found to be switched on by retinoids was BMP-2 (bone morphogenetic protein-2), which codes for a protein thought to play a role in cell death and in the development of nervous system tissue that gives rise to medulloblastomas.

The addition of purified BMP-2 protein to medulloblastoma cells caused significant cell death, even to cells that were resistant to retinoids. Further, when retinoid-senstive cells were grown in close proximity to resistant cells, both types of cells were killed after addition of retinoids. This result indicates that BMP-2 protein secreted by the sensitive cells triggers killing of the neighboring drug-resistant cells.

"This has significant clinical implications," Hallahan said. "Tumors contain mixture of cell types, some of which may be resistant to certain drugs. Our results suggest that retinoid treatment could still manage to kill resistant cells that are in proximity to drug-responsive cells in the tumor."

Olson said that it also suggests that BMP-2 or other proteins "downstream" in the retinoid-induced cell-death cascade could be potential targets for new anticancer drugs.

A proposed clinical trial for high-risk pediatric medulloblastoma patients to compare standard therapy plus retinoids to standard therapy alone is now under review by the Children’s Oncology Group, a National Cancer Institute-supported clinical trials cooperative group whose member institutions are devoted exclusively to childhood and adolescent cancer research. Olson, who will serve as principal investigator of the study, hopes to begin the trial at 235 hospitals sometime within the next year.

"It’s tremendously satisfying to see a new therapy move so quickly through the pipeline," he said. "One major reason this has progressed so rapidly is that retinoids already have been approved for use in childhood cancers. But equally important has been the center’s unique research environment-with strengths in laboratory science and pediatric oncology-combined with the opportunity for collaboration with physician’s at Children’s, which allowed us to take this study all the way from basic genetics to propose a clinical trial," Olson said.

Susan Edmonds | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>