Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Search for life could include planets, stars unlike ours

04.08.2003


The search for life on other planets could soon extend to solar systems that are very different from our own, according to a new study by an Ohio State University astronomer and his colleagues.

In fact, finding a terrestrial planet in such a solar system would offer unique scientific opportunities to test evolution, said Andrew Gould, professor of astronomy here. In a recent issue of Astrophysical Journal Letters, he and his coauthors calculated that NASA’s upcoming Space Interferometry Mission (SIM) would be able to detect habitable planets near stars significantly more massive than the sun.

Scientists have typically thought that the search for life should focus on finding planets like Earth that orbit stars like the sun, but this new finding shows that “the field is wide open,” Gould said. “Here’s a type of solar system that we never thought to look at,” he added, “but now we’ll have the tools to do it.”



Gould is on the science team that is helping to plan the SIM mission, and he is working to define the capabilities of the satellite.

The satellite was set to launch in 2009, but its fate is now uncertain. NASA is considering whether to divert funds to maintain the Hubble Space Telescope beyond its scheduled retirement in 2010, Gould explained, and he has been asked to address the issue for an assembly of astronomers in Washington D.C. on Thursday, July 31.

SIM would help astronomers find habitable planets, Gould said. The key is detecting planets that circle a star at just the right distance to maintain a supply of liquid water. The range of most promising orbits depends on the type of the star, and is called the “habitable zone.”

The earth resides directly in the habitable zone for our solar system, some 93 million miles from the sun. The nearest planets, Venus and Mars, barely lie within the edges of the habitable zone.

Hotter, more massive stars have always been considered less likely to harbor life, though not because they would be too hot. Planets could still enjoy temperate climates, just at orbits farther away from the star.

The problem is one of time, not temperature, Gould said. Hotter stars tend to “burn out” faster -- perhaps too fast for life to develop there.

Our sun is approximately 4.5 billion years old; in contrast, one of the stars examined in the study is 1.5 times more massive than the sun, and would probably only generate life-sustaining energy for about two billion years.

Given the billions of years required for evolution of life on earth, scientists could question whether life would stand a chance in a shorter-lived solar system.

“We have no idea how evolution would proceed on any planet other than our own,” Gould said. “If we find a planet around a shorter-lived star, we may be able to test what would happen to evolution under those circumstances.”

SIM will use Interferometry -- a technique that involves the interference of light waves -- to very accurately measure the position of stars in the sky. The satellite would notice, for instance, if a point of light on the surface of the moon moved the width of a dime.

In the case of distant stars, SIM will pick up on the tiny wobble in the position of a star caused by the gravity of its orbiting planets.

That’s what will make SIM ideal for studying hotter, massive stars, Gould said. Planets that orbit far from a star -- as the habitable planets around a hot star would have to do -- create a larger wobble.

He and study coauthors Eric B. Ford of Princeton University and Debra A. Fischer of the University of California, Berkeley, determined that SIM is sensitive enough for the task.

Previously, Gould and Ohio State professor Darren DePoy and graduate student Joshua Pepper determined that another future NASA mission could be used to find habitable planets around very small stars, which are much more plentiful in the galaxy than stars like our sun.

That mission, the Kepler Mission, will detect planetary transits -- events where planets pass in front of a star and block the star’s light from reaching earth. Transits of planets orbiting close to a star are easier to detect, and because these small stars are very dim, the habitable zone would also be very close to the star.

“The point is that the various methods for planet detection complement each other, and can be used to find habitable planets around a wide variety of stars,” Gould said.

NASA funded this research.

Contact: Andrew Gould, (614) 292-1892; Gould.34@osu.edu

Andrew Gould | Ohio Stat University
Further information:
http://planetquest.jpl.nasa.gov/SIM/sim_index.html
http://www.acs.ohio-state.edu/units/research

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>