Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tufts University psychology research tackles problem of "false memories"

25.07.2003


As an eyewitness sits on the stand in a courtroom recalling details of an incident, how much of what he or she remembers actually happened?



False memories are a common occurrence in the courtroom and in everyday life, and have long been considered by psychologists as a side effect of efforts to boost memory. New research from Tufts University has answered the question of how to increase memory, without also increasing corresponding false memories.

"The better we understand false memory, the more we will be able to explain the factors that lead to the problem in the laboratory and real world situations," explained Tufts University psychologist Salvatore Soraci, whose research is published in July’s issue of Journal of Experimental Psychology: Learning, Memory and Cognition. "Generative learning holds the promise of immunizing people against the pitfalls of false memory."


Previous research has focused on how to improve memory using "generative learning" -- the concept that individuals remember things better when actively involved in forming an idea. For example, if an individual is given a clue and asked to provide a one-word answer, he or she will remember that word better than if simply given the word and told to memorize it.

Funded by a $654,000 grant from the National Institutes of Health (NIH), Soraci and Tufts assistant professor of psychology Michael Carlin set out to determine what effect generative learning had on the formation of false memories.

According to Soraci, test participants were given a list of words to memorize – some of the words were complete, and others were missing one letter. The complete words fit within subject categories (for instance, "queen," "moat," "knight," etc.), while the incomplete words were in different subject categories (for instance, furniture such as "t_ble" and "cha_r"). After a three-minute period, during which participants were given a "distracting" math quiz, they were then presented with a list of words. This list included some words that had not been included in the original list but were related to the subject categories, and the participants were then asked if the words were among those that had been shown earlier.

"The incomplete words led to generative learning, since the participants had to determine the words on their own," Soraci said. "People were far more likely to falsely remember words from the list of complete words - such as mistakenly believing that ’king’ had been on the list - than they were to falsely identify a word from the generative learning list."

In a similar experiment, test participants were not provided with the second list, and instead asked to write down all the words they could remember seeing. The experiment showed the same advantage for generative learning.

In yet another experiment, Soraci determined what kind of cues would help people to remember words without increasing false memories. Participants were given a list of words that were missing one letter and could be either of two words, depending on what letter filled in the blank. For example, one of the words on the list was "s_eaker," which could be "speaker" or "sneaker." Some of the participants were given a positive clue, such as "a tennis shoe," and asked to fill in the blank. Others were given a negative clue, such as "not part of a stereo." Soraci found that people were more likely to remember words when given a negative clue than a positive one, and were also less likely to falsely remember a word.

"This method of learning using negative cues is similar to how we find our way when we’re driving our cars and looking for a new location," explained Soraci. "If we make a wrong turn, we’re much more likely to remember the correct route next time by remembering that we shouldn’t go the wrong way again."

Soraci’s cognitive psychology research also includes his highly regarded work examining the enhancement of memory as a result of sudden realizations, or "eureka" moments. Other Soraci research focuses on the relationship between cognitive and perceptual variables -- that is, how what we see influences what we think, and conversely how our thought processes influence our concept of what we see. Soraci has worked collaboratively on several NIH research grants with the Eunice Kennedy Shriver Center, including a recent two-year $140,000 NIH grant to continue his research on generative learning and false memory on individuals who are mentally retarded.

His research also reflects Tufts’ growing expertise in the field of cognitive psychology, ranging from the impact of music on the brain to the subconscious influences of stigma and stereotyping on human behavior.

"We’ve got a brand new psychology building outfitted with state-of-the-art labs, and Sal and his colleagues are now extending their scholarship in some innovative collaborations across the University," said Jamshed Bharucha, provost and senior vice president, who also has a cognitive psychology lab in the new facility.

Contact: Craig LeMoult, craig.lemoult@tufts.edu, phone: +1-617-627-4317

Craig LeMoult | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>