Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tufts University psychology research tackles problem of "false memories"

25.07.2003


As an eyewitness sits on the stand in a courtroom recalling details of an incident, how much of what he or she remembers actually happened?



False memories are a common occurrence in the courtroom and in everyday life, and have long been considered by psychologists as a side effect of efforts to boost memory. New research from Tufts University has answered the question of how to increase memory, without also increasing corresponding false memories.

"The better we understand false memory, the more we will be able to explain the factors that lead to the problem in the laboratory and real world situations," explained Tufts University psychologist Salvatore Soraci, whose research is published in July’s issue of Journal of Experimental Psychology: Learning, Memory and Cognition. "Generative learning holds the promise of immunizing people against the pitfalls of false memory."


Previous research has focused on how to improve memory using "generative learning" -- the concept that individuals remember things better when actively involved in forming an idea. For example, if an individual is given a clue and asked to provide a one-word answer, he or she will remember that word better than if simply given the word and told to memorize it.

Funded by a $654,000 grant from the National Institutes of Health (NIH), Soraci and Tufts assistant professor of psychology Michael Carlin set out to determine what effect generative learning had on the formation of false memories.

According to Soraci, test participants were given a list of words to memorize – some of the words were complete, and others were missing one letter. The complete words fit within subject categories (for instance, "queen," "moat," "knight," etc.), while the incomplete words were in different subject categories (for instance, furniture such as "t_ble" and "cha_r"). After a three-minute period, during which participants were given a "distracting" math quiz, they were then presented with a list of words. This list included some words that had not been included in the original list but were related to the subject categories, and the participants were then asked if the words were among those that had been shown earlier.

"The incomplete words led to generative learning, since the participants had to determine the words on their own," Soraci said. "People were far more likely to falsely remember words from the list of complete words - such as mistakenly believing that ’king’ had been on the list - than they were to falsely identify a word from the generative learning list."

In a similar experiment, test participants were not provided with the second list, and instead asked to write down all the words they could remember seeing. The experiment showed the same advantage for generative learning.

In yet another experiment, Soraci determined what kind of cues would help people to remember words without increasing false memories. Participants were given a list of words that were missing one letter and could be either of two words, depending on what letter filled in the blank. For example, one of the words on the list was "s_eaker," which could be "speaker" or "sneaker." Some of the participants were given a positive clue, such as "a tennis shoe," and asked to fill in the blank. Others were given a negative clue, such as "not part of a stereo." Soraci found that people were more likely to remember words when given a negative clue than a positive one, and were also less likely to falsely remember a word.

"This method of learning using negative cues is similar to how we find our way when we’re driving our cars and looking for a new location," explained Soraci. "If we make a wrong turn, we’re much more likely to remember the correct route next time by remembering that we shouldn’t go the wrong way again."

Soraci’s cognitive psychology research also includes his highly regarded work examining the enhancement of memory as a result of sudden realizations, or "eureka" moments. Other Soraci research focuses on the relationship between cognitive and perceptual variables -- that is, how what we see influences what we think, and conversely how our thought processes influence our concept of what we see. Soraci has worked collaboratively on several NIH research grants with the Eunice Kennedy Shriver Center, including a recent two-year $140,000 NIH grant to continue his research on generative learning and false memory on individuals who are mentally retarded.

His research also reflects Tufts’ growing expertise in the field of cognitive psychology, ranging from the impact of music on the brain to the subconscious influences of stigma and stereotyping on human behavior.

"We’ve got a brand new psychology building outfitted with state-of-the-art labs, and Sal and his colleagues are now extending their scholarship in some innovative collaborations across the University," said Jamshed Bharucha, provost and senior vice president, who also has a cognitive psychology lab in the new facility.

Contact: Craig LeMoult, craig.lemoult@tufts.edu, phone: +1-617-627-4317

Craig LeMoult | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

Satellite data for agriculture

28.07.2017 | Information Technology

Abrupt motion sharpens x-ray pulses

28.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>