Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tufts University psychology research tackles problem of "false memories"


As an eyewitness sits on the stand in a courtroom recalling details of an incident, how much of what he or she remembers actually happened?

False memories are a common occurrence in the courtroom and in everyday life, and have long been considered by psychologists as a side effect of efforts to boost memory. New research from Tufts University has answered the question of how to increase memory, without also increasing corresponding false memories.

"The better we understand false memory, the more we will be able to explain the factors that lead to the problem in the laboratory and real world situations," explained Tufts University psychologist Salvatore Soraci, whose research is published in July’s issue of Journal of Experimental Psychology: Learning, Memory and Cognition. "Generative learning holds the promise of immunizing people against the pitfalls of false memory."

Previous research has focused on how to improve memory using "generative learning" -- the concept that individuals remember things better when actively involved in forming an idea. For example, if an individual is given a clue and asked to provide a one-word answer, he or she will remember that word better than if simply given the word and told to memorize it.

Funded by a $654,000 grant from the National Institutes of Health (NIH), Soraci and Tufts assistant professor of psychology Michael Carlin set out to determine what effect generative learning had on the formation of false memories.

According to Soraci, test participants were given a list of words to memorize – some of the words were complete, and others were missing one letter. The complete words fit within subject categories (for instance, "queen," "moat," "knight," etc.), while the incomplete words were in different subject categories (for instance, furniture such as "t_ble" and "cha_r"). After a three-minute period, during which participants were given a "distracting" math quiz, they were then presented with a list of words. This list included some words that had not been included in the original list but were related to the subject categories, and the participants were then asked if the words were among those that had been shown earlier.

"The incomplete words led to generative learning, since the participants had to determine the words on their own," Soraci said. "People were far more likely to falsely remember words from the list of complete words - such as mistakenly believing that ’king’ had been on the list - than they were to falsely identify a word from the generative learning list."

In a similar experiment, test participants were not provided with the second list, and instead asked to write down all the words they could remember seeing. The experiment showed the same advantage for generative learning.

In yet another experiment, Soraci determined what kind of cues would help people to remember words without increasing false memories. Participants were given a list of words that were missing one letter and could be either of two words, depending on what letter filled in the blank. For example, one of the words on the list was "s_eaker," which could be "speaker" or "sneaker." Some of the participants were given a positive clue, such as "a tennis shoe," and asked to fill in the blank. Others were given a negative clue, such as "not part of a stereo." Soraci found that people were more likely to remember words when given a negative clue than a positive one, and were also less likely to falsely remember a word.

"This method of learning using negative cues is similar to how we find our way when we’re driving our cars and looking for a new location," explained Soraci. "If we make a wrong turn, we’re much more likely to remember the correct route next time by remembering that we shouldn’t go the wrong way again."

Soraci’s cognitive psychology research also includes his highly regarded work examining the enhancement of memory as a result of sudden realizations, or "eureka" moments. Other Soraci research focuses on the relationship between cognitive and perceptual variables -- that is, how what we see influences what we think, and conversely how our thought processes influence our concept of what we see. Soraci has worked collaboratively on several NIH research grants with the Eunice Kennedy Shriver Center, including a recent two-year $140,000 NIH grant to continue his research on generative learning and false memory on individuals who are mentally retarded.

His research also reflects Tufts’ growing expertise in the field of cognitive psychology, ranging from the impact of music on the brain to the subconscious influences of stigma and stereotyping on human behavior.

"We’ve got a brand new psychology building outfitted with state-of-the-art labs, and Sal and his colleagues are now extending their scholarship in some innovative collaborations across the University," said Jamshed Bharucha, provost and senior vice president, who also has a cognitive psychology lab in the new facility.

Contact: Craig LeMoult,, phone: +1-617-627-4317

Craig LeMoult | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

New 4-D printer could reshape the world we live in

21.03.2018 | Life Sciences

Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

21.03.2018 | Trade Fair News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>