Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tufts University psychology research tackles problem of "false memories"

25.07.2003


As an eyewitness sits on the stand in a courtroom recalling details of an incident, how much of what he or she remembers actually happened?



False memories are a common occurrence in the courtroom and in everyday life, and have long been considered by psychologists as a side effect of efforts to boost memory. New research from Tufts University has answered the question of how to increase memory, without also increasing corresponding false memories.

"The better we understand false memory, the more we will be able to explain the factors that lead to the problem in the laboratory and real world situations," explained Tufts University psychologist Salvatore Soraci, whose research is published in July’s issue of Journal of Experimental Psychology: Learning, Memory and Cognition. "Generative learning holds the promise of immunizing people against the pitfalls of false memory."


Previous research has focused on how to improve memory using "generative learning" -- the concept that individuals remember things better when actively involved in forming an idea. For example, if an individual is given a clue and asked to provide a one-word answer, he or she will remember that word better than if simply given the word and told to memorize it.

Funded by a $654,000 grant from the National Institutes of Health (NIH), Soraci and Tufts assistant professor of psychology Michael Carlin set out to determine what effect generative learning had on the formation of false memories.

According to Soraci, test participants were given a list of words to memorize – some of the words were complete, and others were missing one letter. The complete words fit within subject categories (for instance, "queen," "moat," "knight," etc.), while the incomplete words were in different subject categories (for instance, furniture such as "t_ble" and "cha_r"). After a three-minute period, during which participants were given a "distracting" math quiz, they were then presented with a list of words. This list included some words that had not been included in the original list but were related to the subject categories, and the participants were then asked if the words were among those that had been shown earlier.

"The incomplete words led to generative learning, since the participants had to determine the words on their own," Soraci said. "People were far more likely to falsely remember words from the list of complete words - such as mistakenly believing that ’king’ had been on the list - than they were to falsely identify a word from the generative learning list."

In a similar experiment, test participants were not provided with the second list, and instead asked to write down all the words they could remember seeing. The experiment showed the same advantage for generative learning.

In yet another experiment, Soraci determined what kind of cues would help people to remember words without increasing false memories. Participants were given a list of words that were missing one letter and could be either of two words, depending on what letter filled in the blank. For example, one of the words on the list was "s_eaker," which could be "speaker" or "sneaker." Some of the participants were given a positive clue, such as "a tennis shoe," and asked to fill in the blank. Others were given a negative clue, such as "not part of a stereo." Soraci found that people were more likely to remember words when given a negative clue than a positive one, and were also less likely to falsely remember a word.

"This method of learning using negative cues is similar to how we find our way when we’re driving our cars and looking for a new location," explained Soraci. "If we make a wrong turn, we’re much more likely to remember the correct route next time by remembering that we shouldn’t go the wrong way again."

Soraci’s cognitive psychology research also includes his highly regarded work examining the enhancement of memory as a result of sudden realizations, or "eureka" moments. Other Soraci research focuses on the relationship between cognitive and perceptual variables -- that is, how what we see influences what we think, and conversely how our thought processes influence our concept of what we see. Soraci has worked collaboratively on several NIH research grants with the Eunice Kennedy Shriver Center, including a recent two-year $140,000 NIH grant to continue his research on generative learning and false memory on individuals who are mentally retarded.

His research also reflects Tufts’ growing expertise in the field of cognitive psychology, ranging from the impact of music on the brain to the subconscious influences of stigma and stereotyping on human behavior.

"We’ve got a brand new psychology building outfitted with state-of-the-art labs, and Sal and his colleagues are now extending their scholarship in some innovative collaborations across the University," said Jamshed Bharucha, provost and senior vice president, who also has a cognitive psychology lab in the new facility.

Contact: Craig LeMoult, craig.lemoult@tufts.edu, phone: +1-617-627-4317

Craig LeMoult | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>