Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research challenges prevailing theory of microbial biodiversity

25.07.2003


A new study led by researchers at the University of California, Berkeley, has found genetic differences in a sampling of a species of hot spring-loving microbes from around the world.



The findings, published by the journal Science, at the Science Express website, challenges the prevailing theory of microbial biodiversity.

It is well accepted in evolutionary science that species of animals and plants are more closely related when they are geographically near each other. When it comes to the tiny world of microbes, however, most scientists believe that different evolutionary rules apply.


"The current dogma has been that, for microbes, what determines diversity is not geographic distance but specific environments," said John Taylor, professor of plant and microbial biology at UC Berkeley’s College of Natural Resources and the head of the lab where the study was conducted. "The motto for microbes has been, ’Everything is everywhere, but the environment selects.’ "

To test this theory, Rachel Whitaker, a UC Berkeley graduate student in Taylor’s lab and lead author of the paper, trekked around the globe - by helicopter in some remote areas - to collect samples of a microbe called Sulfolobus islandicus, which thrives in the extreme environments of geothermal hot springs and volcanic vents. Sulfolobus microbes belong to the domain archaea - discovered in the 1970s - and can withstand highly acidic conditions and temperatures as high as 180 degrees Fahrenheit.

The samples were collected from the Mutnovsky Volcano and the Uzon Caldera-Geyser Valley region on the Kamchatka Peninsula in eastern Russia, the Lassen Volcanic and Yellowstone national parks in North America, and the volcanic region of western Iceland.

The researchers’ analysis also includes a large portion of previously collected Sulfolobus samples that were provided by co-author Dennis Grogan, associate professor of biological sciences at the University of Cincinnati.

In all, the researchers analyzed the DNA of 78 separate cultures of Sulfolobus islandicus and found small but significant levels of genetic differentiation among populations that live in different areas, despite the fact that they existed in similar ecological conditions.

"It makes sense that thermophiles cannot migrate over long distances since they are specifically adapted to life in the extremely hot acidic environments of a geothermal hot spring," said Whitaker. "It’s not too surprising that geographically isolated populations are evolving independently. This is predicted by population genetic theory but has never before been shown in microbial species."

Moreover, the study shows that genetic differences increased in direct correlation with geographic distance.

"If this type of geographic pattern occurs in other microbes, it means the microbial world is even more diverse than we had previously predicted, which is astounding," said Whitaker.

Taylor said the study has implications for how researchers view and treat microbes that emerge in different parts of the world.

"Many bacteria and fungi cause disease, and genetically different species may exhibit different behavior," said Taylor. "To treat diseases, researchers need to understand exactly which species they’re working with."

Scientists working on a pathogen that emerged in China, for example, cannot automatically assume that the same species of pathogen that emerged in the United States will behave the same way, the researchers said.

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>