Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study sheds light on critical relay in visual circuit of the brain


Scientists at Harvard Medical School have cleared up some of the mystery surrounding a key structure in the developing brain that helps form the visual circuits. Their findings, which appear in the July 25 issue of Science, could provide new insight into early brain defects that are linked to conditions like cerebral palsy and learning disabilities.

During development, nerve cells in the eye send messages to the thalamus, a region located deep within the brain. The thalamus then passes these messages on to the area of the outer cerebral cortex that deals with vision. The connection between the thalamus and cortex initially passes through a transient and seldom studied structure called the subplate. By removing parts of the subplate in cats, the HMS researchers have shown that this structure is a key component in strengthening the thalamus to cortex connection and in mapping out further cortical wiring patterns important for vision.

The subplate neurons are acting "kind of like teachers," says senior author Carla Shatz, the Nathan Marsh Pusey professor of neurobiology and head of the HMS Department of Neurobiology. "They’re needed for the thalamic connections to strengthen and grow so that they can become strong enough to talk to the cortical neurons."

Shatz, who is also co-chair of the Harvard Center for Neurodegeneration and Repair (, says that an intact subplate normally acts like a form of building scaffolding for the neural circuits, directing and strengthening important nerve signals, before disappearing. "You make sure all the connections in the building are really strong so the thing doesn’t fall down, and then you remove the scaffolding." Once the brain is fully developed and the subplate neurons start to die, a hand-off of sorts occurs in which the thalamus starts sending its signals directly to the developing visual cortex, bypassing the dismantling subplate.

In humans, the subplate scaffolding disappears by two years of age. But it is highly susceptible to damage even in the womb. During this developmental stage, the subplate neurons are the first to mature and thus require lots of oxygen for their many metabolic processes. Oxygen deprivation early on, as occurs in hypoxic injury in the womb or at birth, could harm the subplate and lead to defects like cerebral palsy or other disabilities later in life. If it turns out that the subplate is linked to such defects, understanding more about its function could eventually lead to new therapies.

Research looking at the subplate neurons has proven difficult in the past because of problems accessing the cells, which are located deep below the cerebral cortical plate, and because the structure disappears by adulthood. This did not deter Kanold and colleagues, who used toxins that targeted specific molecules on the subplate neurons to selectively remove parts of the structure.

The study looks closely at the neural connections that start at the lateral geniculate nucleus (LGN), a thalamic region that receives inputs from the retinal cells, and end in a late-developing area of the visual cortex labeled layer 4. From there, highly specialized columns of cells form, which are involved in analyzing visual stimuli. Nobel prize-winning work by David Hubel and Torsten Wiesel at Harvard Medical School demonstrated that the thalamic connections to the nerve cells in the cortex help form these columns. One type of column, for determining ocular dominance, forms based on visual signals it receives from either the left or right eye. Another kind of column forms in response to bars of light presented to the eyes at different orientations--for example, neurons in one such column may respond to vertical lines like telephone poles, while cells of another column may recognize horizontal lines like the wires crossing between the poles.

By examining the brains of cats with their subplate neurons removed, the researchers have shown that not only is the structure involved in strengthening the signal from the LGN to the layer 4 neurons, but without it, the distinctive ocular dominance and orientation columns do not form. "Basically, taking out the subplate arrests cortical development," says Patrick Kanold, a research fellow in neurobiology at HMS and lead author of the study. Kanold showed that neurons in the visual cortex with a disrupted subplate could not distinguish light bars of different orientations--whether the lines were vertical, horizontal, or at an angle. This was a clear indication that their orientation columns had not formed properly. By measuring neural activity, he also showed that the signals between the LGN and the layer 4 neurons were much weaker in brains with missing subplate neurons.

Contact: Alison Harris, Gaia Remerowski, John Lacey, +1-617-432-0442,

John Lacey | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>