Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study sheds light on critical relay in visual circuit of the brain

25.07.2003


Scientists at Harvard Medical School have cleared up some of the mystery surrounding a key structure in the developing brain that helps form the visual circuits. Their findings, which appear in the July 25 issue of Science, could provide new insight into early brain defects that are linked to conditions like cerebral palsy and learning disabilities.



During development, nerve cells in the eye send messages to the thalamus, a region located deep within the brain. The thalamus then passes these messages on to the area of the outer cerebral cortex that deals with vision. The connection between the thalamus and cortex initially passes through a transient and seldom studied structure called the subplate. By removing parts of the subplate in cats, the HMS researchers have shown that this structure is a key component in strengthening the thalamus to cortex connection and in mapping out further cortical wiring patterns important for vision.

The subplate neurons are acting "kind of like teachers," says senior author Carla Shatz, the Nathan Marsh Pusey professor of neurobiology and head of the HMS Department of Neurobiology. "They’re needed for the thalamic connections to strengthen and grow so that they can become strong enough to talk to the cortical neurons."


Shatz, who is also co-chair of the Harvard Center for Neurodegeneration and Repair (hcnr.med.harvard.edu), says that an intact subplate normally acts like a form of building scaffolding for the neural circuits, directing and strengthening important nerve signals, before disappearing. "You make sure all the connections in the building are really strong so the thing doesn’t fall down, and then you remove the scaffolding." Once the brain is fully developed and the subplate neurons start to die, a hand-off of sorts occurs in which the thalamus starts sending its signals directly to the developing visual cortex, bypassing the dismantling subplate.

In humans, the subplate scaffolding disappears by two years of age. But it is highly susceptible to damage even in the womb. During this developmental stage, the subplate neurons are the first to mature and thus require lots of oxygen for their many metabolic processes. Oxygen deprivation early on, as occurs in hypoxic injury in the womb or at birth, could harm the subplate and lead to defects like cerebral palsy or other disabilities later in life. If it turns out that the subplate is linked to such defects, understanding more about its function could eventually lead to new therapies.

Research looking at the subplate neurons has proven difficult in the past because of problems accessing the cells, which are located deep below the cerebral cortical plate, and because the structure disappears by adulthood. This did not deter Kanold and colleagues, who used toxins that targeted specific molecules on the subplate neurons to selectively remove parts of the structure.

The study looks closely at the neural connections that start at the lateral geniculate nucleus (LGN), a thalamic region that receives inputs from the retinal cells, and end in a late-developing area of the visual cortex labeled layer 4. From there, highly specialized columns of cells form, which are involved in analyzing visual stimuli. Nobel prize-winning work by David Hubel and Torsten Wiesel at Harvard Medical School demonstrated that the thalamic connections to the nerve cells in the cortex help form these columns. One type of column, for determining ocular dominance, forms based on visual signals it receives from either the left or right eye. Another kind of column forms in response to bars of light presented to the eyes at different orientations--for example, neurons in one such column may respond to vertical lines like telephone poles, while cells of another column may recognize horizontal lines like the wires crossing between the poles.

By examining the brains of cats with their subplate neurons removed, the researchers have shown that not only is the structure involved in strengthening the signal from the LGN to the layer 4 neurons, but without it, the distinctive ocular dominance and orientation columns do not form. "Basically, taking out the subplate arrests cortical development," says Patrick Kanold, a research fellow in neurobiology at HMS and lead author of the study. Kanold showed that neurons in the visual cortex with a disrupted subplate could not distinguish light bars of different orientations--whether the lines were vertical, horizontal, or at an angle. This was a clear indication that their orientation columns had not formed properly. By measuring neural activity, he also showed that the signals between the LGN and the layer 4 neurons were much weaker in brains with missing subplate neurons.

Contact: Alison Harris, Gaia Remerowski, John Lacey, +1-617-432-0442, public_affairs@hms.harvard.edu

John Lacey | EurekAlert!
Further information:
http://www.hms.harvard.edu/news/index.html

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>