Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers find way to improve musical performance


Researchers from Imperial College London and Charing Cross Hospital have discovered a way to help musicians improve their musical performances by an average of up to 17 per cent, equivalent to an improvement of one grade or class of honours.

The research published in this months edition of Neuroreport, shows that using a process known as neurofeedback, students at London’s Royal College of Music were able to improve their performance across a number of areas including their musical understanding and imagination, and their communication with the audience.

Dr. Tobias Egner, from Imperial College London at Charing Cross Hospital, one of the authors of the study, comments: "This is a unique use of neurofeedback. It has been used for helping with a number of conditions such as attention deficit disorder and epilepsy, but this is the first time it has been used to improve a complex set of skills such as musical performance in healthy students."

Two experiments were conducted involving a total of 97 students. In both experiments, the students were assessed on two pieces of music, both before and after the neurofeedback training, according to a 10-point scale adapted from a standard set of music performance evaluation criteria of the Associated Board of the Royal Schools of Music, by a panel of expert judges. The judges evaluated video-recorded performances, and were unaware of whether the performance had been given before or after the intervention.

Neurofeedback monitors brain activity through sensors attached to the scalp which filter out the brainwaves. These filtered brainwaves are then ’fed back’ to the individual in the form of a video game displayed on screen, and the participant learns to control the game by altering particular aspects of their brain activity. This alteration in brain activity can influence cognitive performance.

In the first experiment, 22 students out of 36 were trained on two neurofeedback protocols (SMR and beta1), commonly used as tools for the enhancement of attention, and, following this, on a deep relaxation alpha/theta (a/t) protocol. In addition a second group of 12 was engaged in a regime of weekly physical exercise and a "mental skills training" programme derived from applications in sports psychology. A third group consisted of a scholastic grade and age matched no-training group, which served as a control grade.

In the second experiment, a different cohort of students were randomly allocated to one of six training groups: alpha/theta neurofeedback, beta1 neurofeedback, SMR neurofeedback, physical exercise, mental skills training, or a group that engaged in Alexander Technique training.

All of the students who received neurofeedback training were found to have improved their performances marginally compared with those who received other forms of training, but those who had received the alpha/theta (a/t) protocol improved their performance the most. The range of improvement in performance for the alpha/theta group was between 13.5 per cent and 17 per cent.

Professor John Gruzelier, from Imperial College London at Charing Cross Hospital, and senior author of the study, adds: "These results show that neurofeedback can have a marked effect on musical performance. The alpha/theta training protocol has found promising applications as a complementary therapeutic tool in post-traumatic stress disorder and alcoholism. While it has a role in stress reduction by reducing the level of stage fright, the magnitude and range of beneficial effects on artistic aspects of performance have wider implications than alleviating stress".

Tony Stephenson | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>