Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows EU how to hit Kyoto target

23.07.2003


High temperature superconductor (HTS) devices could help the EU reduce its CO2 emissions by up to 52 million tonnes, equivalent to 65 per cent of its Kyoto Protocol commitment.



Teemu Hartikainen, Jorma Lehtonen and Risto Mikkonen from Tampere University of Technology, Finland have worked out how much European GHG emissions would be reduced if these devices were introduced. Their findings are published today (23 July) in the Institute of Physics journal Superconductor Science and Technology.

Using HTS in motors improves their efficiency so machines use up less electrical energy, thus reducing the GHG emissions from electricity production. HTS devices can approximately halve power losses, as superconducting materials – unlike conventional devices – have practically no resistance, which is the property which causes energy to be wasted as excess heat. However, superconductors need to be kept cold so use up energy in refrigeration.


Risto Mikkonen and his team wanted to find out the efficiency level and power range that would be necessary for HTS devices to be competitive against conventional devices. Energy production is the biggest source of GHG emissions, so they focussed on this. They studied what would happen to GHS emissions from the Finnish electric power grid if all the existing conventional transformers, generators and synchronous motors (which deliver large amounts of steady power) in Finland were replaced by HTS ones, taking into consideration the production and consumption of electricity.

“To find out how competitive superconducting devices would be, we worked out their break-even power, using generally accepted economical and technological estimates, and carried out our GHG emission analysis,” says Teemu Hartikainen.

The break-even power is the minimum power needed for the devices to become commercially viable. Working at their calculated break-even power for HTS devices on the Finnish electric power grid, emissions could go down by the equivalent of 0.8 to 1.55 million tonnes of CO2 per year – which is one to two per cent of Finland’s total GHG emissions. Expanding the results to the whole of the EU, the reduction would be equivalent of 27 to 53 million tonnes of CO2, which is 33 to 65 per cent of the EU’s Kyoto commitment (to reduce GHG emissions by eight per cent from 1990 levels between 2008 and 2012).

The team used a market penetration model based on the write-off rate of present machinery, and calculated that it would take at least 20 years to achieve just half of this reduction potential. HTS devices are promising not only for environmental reasons but also are commercially attractive. Compared to their conventional counterparts, they are less sensitive to load variations, they are more stable, smaller, lighter and less noisy. These features would be especially useful for moving systems, like those on boats, trains or aeroplanes.

“Our results will interest device manufactures who are constantly seeking new developments in the electric power sector,” said the head of superconductivity unit at Tampere University of Technology, Risto Mikkonen. “Superconducting devices could help the EU reduce its emissions of greenhouse gases. Although it will take some time to introduce this new technology, the environmental benefits could accelerate its commercialisation.”

Michelle Cain | Institute of Physics
Further information:
http://www.iop.org/EJ/sust

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>