Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows EU how to hit Kyoto target

23.07.2003


High temperature superconductor (HTS) devices could help the EU reduce its CO2 emissions by up to 52 million tonnes, equivalent to 65 per cent of its Kyoto Protocol commitment.



Teemu Hartikainen, Jorma Lehtonen and Risto Mikkonen from Tampere University of Technology, Finland have worked out how much European GHG emissions would be reduced if these devices were introduced. Their findings are published today (23 July) in the Institute of Physics journal Superconductor Science and Technology.

Using HTS in motors improves their efficiency so machines use up less electrical energy, thus reducing the GHG emissions from electricity production. HTS devices can approximately halve power losses, as superconducting materials – unlike conventional devices – have practically no resistance, which is the property which causes energy to be wasted as excess heat. However, superconductors need to be kept cold so use up energy in refrigeration.


Risto Mikkonen and his team wanted to find out the efficiency level and power range that would be necessary for HTS devices to be competitive against conventional devices. Energy production is the biggest source of GHG emissions, so they focussed on this. They studied what would happen to GHS emissions from the Finnish electric power grid if all the existing conventional transformers, generators and synchronous motors (which deliver large amounts of steady power) in Finland were replaced by HTS ones, taking into consideration the production and consumption of electricity.

“To find out how competitive superconducting devices would be, we worked out their break-even power, using generally accepted economical and technological estimates, and carried out our GHG emission analysis,” says Teemu Hartikainen.

The break-even power is the minimum power needed for the devices to become commercially viable. Working at their calculated break-even power for HTS devices on the Finnish electric power grid, emissions could go down by the equivalent of 0.8 to 1.55 million tonnes of CO2 per year – which is one to two per cent of Finland’s total GHG emissions. Expanding the results to the whole of the EU, the reduction would be equivalent of 27 to 53 million tonnes of CO2, which is 33 to 65 per cent of the EU’s Kyoto commitment (to reduce GHG emissions by eight per cent from 1990 levels between 2008 and 2012).

The team used a market penetration model based on the write-off rate of present machinery, and calculated that it would take at least 20 years to achieve just half of this reduction potential. HTS devices are promising not only for environmental reasons but also are commercially attractive. Compared to their conventional counterparts, they are less sensitive to load variations, they are more stable, smaller, lighter and less noisy. These features would be especially useful for moving systems, like those on boats, trains or aeroplanes.

“Our results will interest device manufactures who are constantly seeking new developments in the electric power sector,” said the head of superconductivity unit at Tampere University of Technology, Risto Mikkonen. “Superconducting devices could help the EU reduce its emissions of greenhouse gases. Although it will take some time to introduce this new technology, the environmental benefits could accelerate its commercialisation.”

Michelle Cain | Institute of Physics
Further information:
http://www.iop.org/EJ/sust

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>