Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows EU how to hit Kyoto target

23.07.2003


High temperature superconductor (HTS) devices could help the EU reduce its CO2 emissions by up to 52 million tonnes, equivalent to 65 per cent of its Kyoto Protocol commitment.



Teemu Hartikainen, Jorma Lehtonen and Risto Mikkonen from Tampere University of Technology, Finland have worked out how much European GHG emissions would be reduced if these devices were introduced. Their findings are published today (23 July) in the Institute of Physics journal Superconductor Science and Technology.

Using HTS in motors improves their efficiency so machines use up less electrical energy, thus reducing the GHG emissions from electricity production. HTS devices can approximately halve power losses, as superconducting materials – unlike conventional devices – have practically no resistance, which is the property which causes energy to be wasted as excess heat. However, superconductors need to be kept cold so use up energy in refrigeration.


Risto Mikkonen and his team wanted to find out the efficiency level and power range that would be necessary for HTS devices to be competitive against conventional devices. Energy production is the biggest source of GHG emissions, so they focussed on this. They studied what would happen to GHS emissions from the Finnish electric power grid if all the existing conventional transformers, generators and synchronous motors (which deliver large amounts of steady power) in Finland were replaced by HTS ones, taking into consideration the production and consumption of electricity.

“To find out how competitive superconducting devices would be, we worked out their break-even power, using generally accepted economical and technological estimates, and carried out our GHG emission analysis,” says Teemu Hartikainen.

The break-even power is the minimum power needed for the devices to become commercially viable. Working at their calculated break-even power for HTS devices on the Finnish electric power grid, emissions could go down by the equivalent of 0.8 to 1.55 million tonnes of CO2 per year – which is one to two per cent of Finland’s total GHG emissions. Expanding the results to the whole of the EU, the reduction would be equivalent of 27 to 53 million tonnes of CO2, which is 33 to 65 per cent of the EU’s Kyoto commitment (to reduce GHG emissions by eight per cent from 1990 levels between 2008 and 2012).

The team used a market penetration model based on the write-off rate of present machinery, and calculated that it would take at least 20 years to achieve just half of this reduction potential. HTS devices are promising not only for environmental reasons but also are commercially attractive. Compared to their conventional counterparts, they are less sensitive to load variations, they are more stable, smaller, lighter and less noisy. These features would be especially useful for moving systems, like those on boats, trains or aeroplanes.

“Our results will interest device manufactures who are constantly seeking new developments in the electric power sector,” said the head of superconductivity unit at Tampere University of Technology, Risto Mikkonen. “Superconducting devices could help the EU reduce its emissions of greenhouse gases. Although it will take some time to introduce this new technology, the environmental benefits could accelerate its commercialisation.”

Michelle Cain | Institute of Physics
Further information:
http://www.iop.org/EJ/sust

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>