Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The bigger and brighter an object, the harder it is to perceive its motion

17.07.2003


Bigger and brighter isn’t better, at least not when trying to view moving objects.



That is the counter-intuitive result of a study performed by a team of Vanderbilt psychologists which sheds new light on one of the most sophisticated processes performed by the brain: identifying and tracking moving objects.

“The bigger an object, the easier it is to see. But it is actually harder for people to determine the motion of objects larger than a tennis ball held at arms length than it is to gauge the motion of smaller objects,” says Duje Tadin, first author of the paper on the study appearing in the July 17 issue of the journal Nature. Tadin is a graduate student in psychology at Vanderbilt and his co-authors are postdoctoral fellow Lee A. Gilroy and professors Joseph S. Lappin and Randolph Blake.


In the article, the researchers show that this unexpected result is due to the way in which visual signals are processed in the part of the brain known as the medial temporal visual area or MT, one of the 30-plus cortical centers involved in processing visual signals. Their findings support the hypothesis that the neurons in MT employ a mechanism called “center-surround receptive field organization.” This same mechanism, which acts to highlight differences, is found in a number of other senses, including touch, hearing and smell.

In the visual system, the center-surround organization is a clever way that nature has developed for filtering out spurious signals caused by shifting patterns of light that fall on the retina that don’t have anything to do with the movement of objects in the external world.

One of the most difficult things that the brain does is pick out objects from the visual background. Objects can differ from the background in a number of different ways, including texture, color, brightness, binocular displacement (the difference in image placement in each eye due to the distance between them) and motion. So the brain uses these and a number of other visual clues to pick out individual objects.

Information from the eyes goes first to the primary visual cortex at the very back of the brain. Here the information is separated into different characteristics, such as texture, color, brightnes and motion.

But how does the brain “see” motion? Just detecting shifting light patterns is not enough. Each time you shift your eyes or move your body, for example, the patterns on the retina change in ways that must be ignored. That is where the researchers think that center-surround receptive field organization comes in. Neurons in the primary visual cortex relay motion information to the neurons in MT, an area that Vanderbilt neuroscientist Jon Kaas helped discover. Experiments indicate that in the center of the visual field MT each neuron “monitors” an area that is the size of a tennis ball held at arms length. However, each neuron is not just affected by what happens in this central area. It is also influenced by the responses of the neurons that monitor a surrounding area about the size of a soccer ball (held at arms length).

The central-surround mechanism works as follows. Each neuron has a preferred direction: right, left, up, down, sideways, et cetera. If a neuron that prefers right motion detects a motion to the right while the neurons in its surround area are not registering any motion, then it fires vigorously. If the neurons in its surround area are stimulated by leftward motion, however, then it sometimes fires even more vigorously. But, if the surrounding neurons are also registering motions to the right, the neuron does not fire. This inhibitory effect is the hallmark of the center-surround mechanism.

“This is what causes moving objects to stand out distinctly even against moving backgrounds,” Lappin comments, “But when objects are the size of the surround area or larger, then they tend to be treated as background motion and so are less visible.”

The researchers discovered this effect when they analyzed the results of a series of psychophysical experiments in which human observers were asked to determine the direction of motion of patterns of varying speed, size and contrast that were flashed briefly on a screen. Not only did these experiments confirm that people have more trouble determining the motion of larger objects, they also showed that this effect was greatest in conditions of high contrast. The influence of surrounding neurons weakens as contrast levels decline.

“This shows that the visual system adapts to the amount of information available. When visual information is plentiful, it uses a differentiation strategy to identify moving objects. As light levels drop, however, it switches to an integration strategy that uses the available information more efficiently,” says Lappin.

Once the researchers had successfully documented the odd side-effect of this motion-enhancing mechanism – that it is harder to determine the motion of larger objects – they designed a series of follow-on experiments that pinpointed the effect to MT. They did so by applying what is known about how MT works to predict how observers should respond to another set of experiments, running the experiments and comparing the results with the predictions. For example, they knew that MT neurons are not very responsive to color. So they revised their experiments so that the patterns were produced by color motion. As predicted, they found that the center-surround effects did not appear.

David F. Salisbury | EurekAlert!
Further information:
http://www.exploration.vanderbilt.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>