Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale researchers identify two types of childhood reading disability

16.07.2003


Yale researchers have, for the first time, identified two types of reading disability: a primarily inherent type with higher cognitive ability (poor readers who compensate for disability), and a more environmentally influenced type with lower cognitive skills and attendance at more disadvantaged schools (persistently poor readers).



The findings, published in the July 1 issue of Biological Psychiatry, show that compensated poor readers were able to overcome some of the disability, improving their ability to read words accurately and to understand what they read. In contrast, the persistently poor readers continued to experience difficulties; as children these readers had lower cognitive ability and more often attended disadvantaged schools.

"These findings indicate the important role of experience in the proper development of the neural systems for reading and offer hope for teaching our most disadvantaged children how to read," said principal investigator Sally Shaywitz, M.D., professor of pediatrics at Yale University School of Medicine and co-director of the National Institutes of Health Yale Center for the Study of Learning and Attention.


Shaywitz said the study resolves a major question in reading disability: why some children compensate for their reading difficulties, while others continue to struggle to read. Brain activation patterns show a disruption in the neural systems for reading in compensated readers. The researchers were surprised to find that the neural circuitry for reading real words is present in persistently poor readers, but has not been properly activated.

"Reading is the most important work of childhood and yet, as many as one in five children struggle to learn to read, with consequences extending beyond childhood into adult life," said Shaywitz. "The discovery that the neural systems for reading are intact in our most disadvantaged and most persistently poor readers has important educational implications and is of special relevance for teaching children to read."

"Children need to be able to sound out words in order to decode them accurately and then, they need to know the meaning of the word to help them decode and comprehend the printed message," said Shaywitz. "Our results show that providing early interventions aimed at stimulating both the ability to sound out words and to understand word meanings would be beneficial in children at risk for reading difficulties associated with disadvantage."

Shaywitz and her team used functional magnetic resonance imaging (fMRI) to examine brain activation patterns in two groups of young adults who were poor readers as children and have been part of the Connecticut Longitudinal study since 1983 when they were five-year-olds. Compensated poor readers made up one group; persistently poor readers were a second group; and a third group of children who were always good readers served as controls.

The children in the study had their reading assessed yearly throughout their primary and secondary schooling. Poor readers were identified by word reading tests in second grade; by ninth grade, some children had improved in reading accuracy (compensated poor readers) while others continued to be poor readers in ninth grade (persistently poor readers).

The study also examined early environmental factors distinguishing the compensated readers from the persistently poor readers that might account for their different brain imaging patterns and outcomes.

"These findings are exciting because they suggest with early stimulation these already present neural systems for reading could be connected properly and allow children to become good readers," said Shaywitz. "They emphasize the importance of the environment and particularly, of teaching."

Other authors on the study included Bennett Shaywitz, M.D., Robert Fulbright, M.D., Pawel Skudlarski, Einar Mencl, Todd Constable, Ken Pugh, John Holahan; Karen Marchione, Jack Fletcher, Reid Lyon and John Gore.

Karen N. Peart | Yale University
Further information:
http://www.yale.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>