Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rethinking How the Brain Sees Visual Features

16.07.2003


Brain scientists will have to rethink the current theory of how the visual processing region of the brain is organized to analyze basic information about the geometry of the environment, according to Duke neurobiologists. In a new study reported in the June 26, 2003, Nature, they studied the visual-processing region -- called the visual cortex -- of ferrets, as the animals’ brains responded to complex patterns.



The results, they said, indicated that clusters of neurons in that region do not specialize in recognizing a particular combination of stimulus features, as previously believed. Rather, individual clusters react to a broad range of stimulus combinations -- combinations that can be predicted by understanding the fundamental spatial and temporal properties of the visual stimulus. The scientists’ research was supported by the National Eye Institute.

The visual cortex -- a layer of brain tissue at the back of the head -- is the first area within the cerebral cortex that processes neural signals from the eye. It performs the basic tasks of recognizing the geometric features of a scene before relaying that information to higher brain regions, where such basic visual data are transformed into the conscious perception of the visual world.


Current theory of visual cortex organization holds that in mammals, including humans, the visual cortex consists of overlapping "feature maps." Each map is an orderly arrangement of neuronal clusters that represents a particular stimulus feature, such as the orientation of edges, their direction of motion, or their spacing. Before these new experiments were performed, it was thought that the response properties of neurons could be predicted by their location relative to the places in the visual cortex where different feature maps overlap. In this view, clusters of neurons are "specialists" for the detection of certain combinations of visual features, such as a set of parallel lines of a certain orientation, spaced a certain distance apart and moving at a specific speed.

In their experiments, Duke neurobiologists -- graduate student Amit Basole, Assistant Professor Leonard White and Professor David Fitzpatrick -- decided to go beyond previous studies in which animals were exposed only to simple visual stimuli consisting of parallel bars, or gratings, with different spacings and moving at different speeds at a right angle to the bars.

"Studies with gratings can tell you a lot," said Fitzpatrick. "For example, you can get a sense of maps of orientation if you change the orientation of the grating. And you can also get information about how properties like spatial frequency are mapped by changing the distance between the bars in the grating, and mapping how that changes patterns of neural activity.

"The underlying assumption was that, in a sense there was a ‘place code’ for stimulus combinations," said Fitzpatrick. "So, a particular orientation, spatial frequency or direction would activate a certain cluster of neurons in the cortex; and changing the orientation, direction or spatial frequency would shift the locus of activity in a predictable way -- one that signified which attribute had been changed."

However, said Fitzpatrick, "these stimuli are really limiting because you can only look at certain stimulus combinations." To explore how the visual cortex reacted to more complex combinations of stimuli, the researchers exposed ferrets to patterns consisting of short line segments whose orientation, length, direction and speed of motion could be varied independently.

Said White, "With these texture patterns, we have the ability to let different properties interact with one another in ways that are closer to the kinds of stimulus interactions that are often present in the visual environment." A striking example of such interactions is the so-called barber pole illusion, he said.

"While the barber pole is moving horizontally as the pole spins about its axis, it creates a perception that the lines are moving up," said White. "The perception induced by the interaction between the orientation of the lines and the direction of motion is the sort of phenomenon that Amit was seeking to understand in terms of neural responses."

The researchers used a technique called optical imaging to detect brain activity in the animals’ visual cortex by shining light of wavelengths that specifically revealed increased blood flow to more active areas. Also, to confirm that the images portrayed actual increases in brain activity, the researchers also recorded electrical activity of individual neurons in different cortical regions during exposure to the patterns.

The effects of changing the visual stimuli on the activity patterns in the animals’ brains were surprising, said Fitzpatrick.

"From the prevailing view, if you kept the orientation of the bars constant and varied the other parameters, you might not expect to see much of a change in the maps of activity," said Fitzpatrick. But, in fact, we saw shifts in activity that were much greater than we expected, and the patterns looked identical to those that were produced by textures that had different combinations of line orientation, direction, length and speed.

"So, this makes clear that thinking about maps in the cortex as consisting of clusters devoted to particular combinations of features is too simplistic when you’re dealing with stimuli that are much more like those you encounter in the visual world," he said.

"What we’re seeing is that a given spot in the cortex seems to be integrating a number of different stimulus components. All of these components figure into what determines the activation of a given spot in the map."

In this new way of thinking about the visual cortex, it is still possible to consider the clusters of neurons as specialists; neurons in these new studies responded to complex visual patterns with remarkable selectivity, said Fitzpatrick. However, these findings show that what these clusters specialize in is not the recognition of a unique combination of stimulus features, but the detection of a narrow band of spatial and temporal information that may be produced by a surprising large combination of stimulus features.

The researchers plan further studies to attempt to understand how the visual cortex is organized -- for example, seeking to obtain faster snapshots of brain activity, to obtain more detail in changes in brain activity. They are also working with other colleagues to create mathematical models that might reveal the strategy by which the brain has organized its visual perceptual circuitry.

For additional information, contact:

Dennis Meredith
phone: (919) 681-8054
email: dennis.meredith@duke.edu

Dennis Meredith | Duke University
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>