Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique for sorting sperm could improve fertility treatment

09.07.2003


U-M researchers report more effective method for separating viable sperm



A new technique to find the viable sperm in the semen of men with low sperm motility could lead to a new approach for infertility treatment, according to University of Michigan Health System researchers.

In a study published online and in the July/August issue of Reproductive BioMedicine Online (http://www.rbmonline.com), UMHS researchers used a microscopic chip divided into two channels to encourage viable, healthy sperm to separate from dead and immature sperm, in order to maximize the potential chances of fertilizing an egg. The research focused on separating the sperm and did not attempt fertilization.


"Current methods of isolating sperm for in vitro fertilization work, but not perfectly," says study author Gary D. Smith, Ph.D., associate professor of Obstetrics and Gynecology at the U-M Medical School and director of the Assisted Reproductive Technologies Laboratory.

"One method for separating sperm is centrifugation, which requires spinning the sample at high speeds. Yet, when this is done, live sperm are pelleted with dead sperm that release substances like free oxygen radicals that can damage the good sperm. That’s a drawback to the current method. This new alternative has the potential to be a good way of getting motile sperm away from dead sperm without causing any damage."

Smith and colleagues are encouraged by their recent finding, yet note that it will take several years of development before their approach can be used efficiently and safely in a clinical setting.

The new method involves microfluidics, a new area of biomedical engineering that deals with the microscopic flow of fluids. It’s currently used in applications such as gene sequencing and sorting cell cultures.

In this case, a device about the size of a penny was built with two channels that flowed together into parallel streams and eventually diverged. Sperm were sent through one channel and a saline solution through another channel. When the channels met, the motile, or healthy, sperm were able to cross over to the other stream and exit through the second channel, while the nonmotile sperm stayed their course through the first channel.

"Everything is pushed downstream because of fluid flow being generated by gravity and surface tension. The motile sperm exit a different outlet than non-motile components because motile sperm can swim and cross streamlines," says study co-author Shuichi Takayama, Ph.D., assistant professor of Biomedical Engineering and Macromolecular Science and Engineering at U-M.

Before passing through the device, only 44 percent of the initial sample was motile sperm. After the sperm passed through the flow channels, motile sperm increased to 98 percent. In addition, the sorted samples had twice as many sperm with normal structure and form compared to the unsorted samples. Testing was also done to ensure the substances used in the chip did not affect sperm viability or quality.

About 40 percent of infertility problems are with the male, including low motility. In borderline cases, traditional fertility treatments are highly effective. It’s the men with extremely low sperm numbers who could most benefit from the microfluidic sperm sorting.

In theory only one sperm is needed to fertilize one egg, which means specialists need only isolate a small number of sperm.

"The problem is if there were 10 good sperm in an ejaculate, along with dead sperm, immature sperm and other debris, how do you get those viable sperm? You end up painstakingly searching through the sample for sperm," Smith says. In one patient with very low sperm levels, Smith recalls looking through a sample for six to seven hours to find the motile sperm.

Another advantage to this new sorting technique is that it can be done repeatedly without damaging viable sperm. Using current sorting methods, a significant number of viable sperm are lost. This creates a challenge when samples with extremely low sperm levels do not yield enough viable sperm after sorting. With the microfluidic process, it’s simple to take the remaining sample and send it through the sorter another time.

But men with low motility aren’t the only potential benefactors of this new technique. Smith sees broader implications for a whole new method of treating infertility – a practice that hasn’t changed much since the initial "test tube babies."

"It has potential to provide a solution to a specific problem, but maybe more importantly it could represent a new integrated system where microfluidics is used to sort sperm, and divert those sorted sperm to eggs. Potentially, we could create something that sorts sperm, inseminates eggs and grows embryo all within a device the size of a stamp," Smith says. "Maybe more importantly these microfluidic devices have the potential of more closely recreating the environment of the female oviduct, the site of in vivo fertilization and early embryo development."

Microfluidics has only recently been applied to assisted reproduction. Other studies have looked at its use with eggs and embryos, but this study is the first to show its use in separating sperm.

Before any of this can be applied in a clinical setting, more tests must be conducted. Current studies are looking at improving the device design and applying this technique to a broader range of assisted reproductive technologies.


In addition to Smith and Takayama, the study authors include U-M researchers Timothy Schuster from Urology, Laura Keller from Obstetrics and Gynecology, and Brenda Cho from Biomedical Engineering.

Nicole Fawcett | EurekAlert!
Further information:
http://www.med.umich.edu/1toolbar/whatsnew.htm
http://www.rbmonline.com

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>