Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique for sorting sperm could improve fertility treatment

09.07.2003


U-M researchers report more effective method for separating viable sperm



A new technique to find the viable sperm in the semen of men with low sperm motility could lead to a new approach for infertility treatment, according to University of Michigan Health System researchers.

In a study published online and in the July/August issue of Reproductive BioMedicine Online (http://www.rbmonline.com), UMHS researchers used a microscopic chip divided into two channels to encourage viable, healthy sperm to separate from dead and immature sperm, in order to maximize the potential chances of fertilizing an egg. The research focused on separating the sperm and did not attempt fertilization.


"Current methods of isolating sperm for in vitro fertilization work, but not perfectly," says study author Gary D. Smith, Ph.D., associate professor of Obstetrics and Gynecology at the U-M Medical School and director of the Assisted Reproductive Technologies Laboratory.

"One method for separating sperm is centrifugation, which requires spinning the sample at high speeds. Yet, when this is done, live sperm are pelleted with dead sperm that release substances like free oxygen radicals that can damage the good sperm. That’s a drawback to the current method. This new alternative has the potential to be a good way of getting motile sperm away from dead sperm without causing any damage."

Smith and colleagues are encouraged by their recent finding, yet note that it will take several years of development before their approach can be used efficiently and safely in a clinical setting.

The new method involves microfluidics, a new area of biomedical engineering that deals with the microscopic flow of fluids. It’s currently used in applications such as gene sequencing and sorting cell cultures.

In this case, a device about the size of a penny was built with two channels that flowed together into parallel streams and eventually diverged. Sperm were sent through one channel and a saline solution through another channel. When the channels met, the motile, or healthy, sperm were able to cross over to the other stream and exit through the second channel, while the nonmotile sperm stayed their course through the first channel.

"Everything is pushed downstream because of fluid flow being generated by gravity and surface tension. The motile sperm exit a different outlet than non-motile components because motile sperm can swim and cross streamlines," says study co-author Shuichi Takayama, Ph.D., assistant professor of Biomedical Engineering and Macromolecular Science and Engineering at U-M.

Before passing through the device, only 44 percent of the initial sample was motile sperm. After the sperm passed through the flow channels, motile sperm increased to 98 percent. In addition, the sorted samples had twice as many sperm with normal structure and form compared to the unsorted samples. Testing was also done to ensure the substances used in the chip did not affect sperm viability or quality.

About 40 percent of infertility problems are with the male, including low motility. In borderline cases, traditional fertility treatments are highly effective. It’s the men with extremely low sperm numbers who could most benefit from the microfluidic sperm sorting.

In theory only one sperm is needed to fertilize one egg, which means specialists need only isolate a small number of sperm.

"The problem is if there were 10 good sperm in an ejaculate, along with dead sperm, immature sperm and other debris, how do you get those viable sperm? You end up painstakingly searching through the sample for sperm," Smith says. In one patient with very low sperm levels, Smith recalls looking through a sample for six to seven hours to find the motile sperm.

Another advantage to this new sorting technique is that it can be done repeatedly without damaging viable sperm. Using current sorting methods, a significant number of viable sperm are lost. This creates a challenge when samples with extremely low sperm levels do not yield enough viable sperm after sorting. With the microfluidic process, it’s simple to take the remaining sample and send it through the sorter another time.

But men with low motility aren’t the only potential benefactors of this new technique. Smith sees broader implications for a whole new method of treating infertility – a practice that hasn’t changed much since the initial "test tube babies."

"It has potential to provide a solution to a specific problem, but maybe more importantly it could represent a new integrated system where microfluidics is used to sort sperm, and divert those sorted sperm to eggs. Potentially, we could create something that sorts sperm, inseminates eggs and grows embryo all within a device the size of a stamp," Smith says. "Maybe more importantly these microfluidic devices have the potential of more closely recreating the environment of the female oviduct, the site of in vivo fertilization and early embryo development."

Microfluidics has only recently been applied to assisted reproduction. Other studies have looked at its use with eggs and embryos, but this study is the first to show its use in separating sperm.

Before any of this can be applied in a clinical setting, more tests must be conducted. Current studies are looking at improving the device design and applying this technique to a broader range of assisted reproductive technologies.


In addition to Smith and Takayama, the study authors include U-M researchers Timothy Schuster from Urology, Laura Keller from Obstetrics and Gynecology, and Brenda Cho from Biomedical Engineering.

Nicole Fawcett | EurekAlert!
Further information:
http://www.med.umich.edu/1toolbar/whatsnew.htm
http://www.rbmonline.com

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>