Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Vision Study Links How Brain Recognizes Faces, Moods

01.07.2003


A study at Ohio State University has given new insight to how humans recognize faces and facial expressions. Participants in a study were asked to identify the expressions of faces in a photo database, such as the expressions shown here (in clockwise order, neutral, happy, angry, and screaming). Photos courtesy of Ohio State University.


The human brain combines motion and shape information to recognize faces and facial expressions, a new study suggests.

That new finding, part of an engineer’s quest to design computers that “see” faces the way humans do, provides more evidence concerning a controversy in cognitive psychology.

Were computers to become adept at recognizing faces and moods, they would be more user-friendly, said Aleix Martinez, assistant professor of electrical engineering at Ohio State University. They could also support intelligent video security systems and provide potentially hack-proof computer identification.



Martinez developed a model of how the brain recognizes the faces of people we’ve seen before, and how we discern facial expressions. These two activities take place in different areas of the brain, and some scientists believe that the mental processes involved are completely separate as well; others believe that the two processes are closely linked.

In a recent issue of the journal Vision Research, Martinez reported that the two processes are indeed linked -- indirectly, through the part of the brain that helps us understand motion. We use our knowledge of how facial muscles move when we recognize a smile, for instance, or when we recognize a familiar face regardless of what kind of facial expression he or she has.

Martinez and his colleagues want to use this information to design a computer that recognizes people based on input from a video camera. Most such “computer vision” systems on the market today require many pictures of a person before they can make an identification, and even then the computers can be fooled if the person looks slightly different than in the pictures.

“Ideally, we want a computer that can recognize someone, even though there is only one picture of that person on file, and it was taken at a different angle, in different lighting, or they were wearing sunglasses,” Martinez said.

It’s a tall order, but then again, the goal isn’t 100 percent accuracy.

“When it comes to recognizing faces, people aren’t perfect, but computers are even worse,” said Martinez. “For a computer to interact well with humans and identify people the way we want it to, it would have to make the same errors that humans make.”

Martinez has shown that his model of this brain function -- that we use our knowledge of motion and shape combine together to recognize faces and facial expressions -- closely matches the test results of people he studied while he was at Purdue University.

Martinez photographed the faces of 126 volunteers to create a face database. Each volunteer was photographed with four different facial expressions -- happy, angry, screaming, and neutral -- with different lighting, and with and without different accessories including sunglasses.

For the work just published in Vision Research, Martinez showed photos from the database to two groups of volunteers. The first group was tested to see how fast they could decide if two faces -- one with a neutral expression and one happy, angry, or screaming -- belonged to the same person.

The second group of volunteers was tested to see how fast they could identify the facial expression -- either happy, angry, screaming, or neutral -- shown in a series of photos.

Martinez timed their responses, and compared the results to his computer model. Though the model depicted a much-simplified version of human visual processing, it was unique because it included a module for calculating how much the facial muscles had moved between the different expressions.

If the human brain takes the time to “calculate” movement of the face, he reasoned, then the humans and the computer model would experience similar delays when identifying faces.

Just like the computer model, the human volunteers were quicker to recognize faces and facial expressions that involved little movement, and slower to recognize expressions that involved a lot of movement.

In the first experimental group -- the one that had to decide if two faces belonged to the same person -- volunteers most quickly matched neutral faces to neutral faces (0.8 seconds), followed by neutral to angry (just under 0.9 seconds), neutral to smiling (0.9 seconds), and neutral to screaming faces (just over 1 second).

In the second group -- the one that had to identify which of the four expressions they were looking at -- they most quickly picked out happy faces (1.3 seconds), then neutral (1.5 seconds), angry (1.9 seconds), and screaming faces (barely under 2 seconds).

Although the computer model’s “reaction time” was measured in computer cycles and iterations rather than seconds, it identified faces and expressions in the same order as the human volunteers for both tests.

Martinez model also explained why the human volunteers were able to match angry faces faster in the first test, but identify happy faces faster in the second test.

Except for very subtle features -- such as a furrowed brow, pursed lips, or squinting eyes -- most angry faces aren’t that different from neutral faces. So matching a neutral face to an angry face is easier.

But when the only task is to identify an expression, identifying happiness is easier because in general we need only examine whether one feature -- the mouth -- is smiling.

Ultimately, this work could lead to computers that recognize the faces of authorized users -- eliminating the need for passwords, which sometimes be guessed or obtained by unauthorized users. Computers could also take cues from a user’s emotional state.

“You can imagine a computer saying, ‘you seem upset, what can I do to help?’” Martinez said.

It could improve age-progression software, which is often used by law enforcement to find missing children. Computers would also be able to identify criminals who wear common disguises such as glasses or scarves.

This work was partially supported by the National Science Foundation.



Contact: Aleix Martinez, (614) 688-8225; Martinez.158@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Ohio State University.
Further information:
http://www.osu.edu/researchnews/archive/compvisn.htm
http://sampl.eng.ohio-state.edu/%7Ealeix/
http://eewww.eng.ohio-state.edu/

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>