Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Vision Study Links How Brain Recognizes Faces, Moods

01.07.2003


A study at Ohio State University has given new insight to how humans recognize faces and facial expressions. Participants in a study were asked to identify the expressions of faces in a photo database, such as the expressions shown here (in clockwise order, neutral, happy, angry, and screaming). Photos courtesy of Ohio State University.


The human brain combines motion and shape information to recognize faces and facial expressions, a new study suggests.

That new finding, part of an engineer’s quest to design computers that “see” faces the way humans do, provides more evidence concerning a controversy in cognitive psychology.

Were computers to become adept at recognizing faces and moods, they would be more user-friendly, said Aleix Martinez, assistant professor of electrical engineering at Ohio State University. They could also support intelligent video security systems and provide potentially hack-proof computer identification.



Martinez developed a model of how the brain recognizes the faces of people we’ve seen before, and how we discern facial expressions. These two activities take place in different areas of the brain, and some scientists believe that the mental processes involved are completely separate as well; others believe that the two processes are closely linked.

In a recent issue of the journal Vision Research, Martinez reported that the two processes are indeed linked -- indirectly, through the part of the brain that helps us understand motion. We use our knowledge of how facial muscles move when we recognize a smile, for instance, or when we recognize a familiar face regardless of what kind of facial expression he or she has.

Martinez and his colleagues want to use this information to design a computer that recognizes people based on input from a video camera. Most such “computer vision” systems on the market today require many pictures of a person before they can make an identification, and even then the computers can be fooled if the person looks slightly different than in the pictures.

“Ideally, we want a computer that can recognize someone, even though there is only one picture of that person on file, and it was taken at a different angle, in different lighting, or they were wearing sunglasses,” Martinez said.

It’s a tall order, but then again, the goal isn’t 100 percent accuracy.

“When it comes to recognizing faces, people aren’t perfect, but computers are even worse,” said Martinez. “For a computer to interact well with humans and identify people the way we want it to, it would have to make the same errors that humans make.”

Martinez has shown that his model of this brain function -- that we use our knowledge of motion and shape combine together to recognize faces and facial expressions -- closely matches the test results of people he studied while he was at Purdue University.

Martinez photographed the faces of 126 volunteers to create a face database. Each volunteer was photographed with four different facial expressions -- happy, angry, screaming, and neutral -- with different lighting, and with and without different accessories including sunglasses.

For the work just published in Vision Research, Martinez showed photos from the database to two groups of volunteers. The first group was tested to see how fast they could decide if two faces -- one with a neutral expression and one happy, angry, or screaming -- belonged to the same person.

The second group of volunteers was tested to see how fast they could identify the facial expression -- either happy, angry, screaming, or neutral -- shown in a series of photos.

Martinez timed their responses, and compared the results to his computer model. Though the model depicted a much-simplified version of human visual processing, it was unique because it included a module for calculating how much the facial muscles had moved between the different expressions.

If the human brain takes the time to “calculate” movement of the face, he reasoned, then the humans and the computer model would experience similar delays when identifying faces.

Just like the computer model, the human volunteers were quicker to recognize faces and facial expressions that involved little movement, and slower to recognize expressions that involved a lot of movement.

In the first experimental group -- the one that had to decide if two faces belonged to the same person -- volunteers most quickly matched neutral faces to neutral faces (0.8 seconds), followed by neutral to angry (just under 0.9 seconds), neutral to smiling (0.9 seconds), and neutral to screaming faces (just over 1 second).

In the second group -- the one that had to identify which of the four expressions they were looking at -- they most quickly picked out happy faces (1.3 seconds), then neutral (1.5 seconds), angry (1.9 seconds), and screaming faces (barely under 2 seconds).

Although the computer model’s “reaction time” was measured in computer cycles and iterations rather than seconds, it identified faces and expressions in the same order as the human volunteers for both tests.

Martinez model also explained why the human volunteers were able to match angry faces faster in the first test, but identify happy faces faster in the second test.

Except for very subtle features -- such as a furrowed brow, pursed lips, or squinting eyes -- most angry faces aren’t that different from neutral faces. So matching a neutral face to an angry face is easier.

But when the only task is to identify an expression, identifying happiness is easier because in general we need only examine whether one feature -- the mouth -- is smiling.

Ultimately, this work could lead to computers that recognize the faces of authorized users -- eliminating the need for passwords, which sometimes be guessed or obtained by unauthorized users. Computers could also take cues from a user’s emotional state.

“You can imagine a computer saying, ‘you seem upset, what can I do to help?’” Martinez said.

It could improve age-progression software, which is often used by law enforcement to find missing children. Computers would also be able to identify criminals who wear common disguises such as glasses or scarves.

This work was partially supported by the National Science Foundation.



Contact: Aleix Martinez, (614) 688-8225; Martinez.158@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Ohio State University.
Further information:
http://www.osu.edu/researchnews/archive/compvisn.htm
http://sampl.eng.ohio-state.edu/%7Ealeix/
http://eewww.eng.ohio-state.edu/

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>