Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Vision Study Links How Brain Recognizes Faces, Moods

01.07.2003


A study at Ohio State University has given new insight to how humans recognize faces and facial expressions. Participants in a study were asked to identify the expressions of faces in a photo database, such as the expressions shown here (in clockwise order, neutral, happy, angry, and screaming). Photos courtesy of Ohio State University.


The human brain combines motion and shape information to recognize faces and facial expressions, a new study suggests.

That new finding, part of an engineer’s quest to design computers that “see” faces the way humans do, provides more evidence concerning a controversy in cognitive psychology.

Were computers to become adept at recognizing faces and moods, they would be more user-friendly, said Aleix Martinez, assistant professor of electrical engineering at Ohio State University. They could also support intelligent video security systems and provide potentially hack-proof computer identification.



Martinez developed a model of how the brain recognizes the faces of people we’ve seen before, and how we discern facial expressions. These two activities take place in different areas of the brain, and some scientists believe that the mental processes involved are completely separate as well; others believe that the two processes are closely linked.

In a recent issue of the journal Vision Research, Martinez reported that the two processes are indeed linked -- indirectly, through the part of the brain that helps us understand motion. We use our knowledge of how facial muscles move when we recognize a smile, for instance, or when we recognize a familiar face regardless of what kind of facial expression he or she has.

Martinez and his colleagues want to use this information to design a computer that recognizes people based on input from a video camera. Most such “computer vision” systems on the market today require many pictures of a person before they can make an identification, and even then the computers can be fooled if the person looks slightly different than in the pictures.

“Ideally, we want a computer that can recognize someone, even though there is only one picture of that person on file, and it was taken at a different angle, in different lighting, or they were wearing sunglasses,” Martinez said.

It’s a tall order, but then again, the goal isn’t 100 percent accuracy.

“When it comes to recognizing faces, people aren’t perfect, but computers are even worse,” said Martinez. “For a computer to interact well with humans and identify people the way we want it to, it would have to make the same errors that humans make.”

Martinez has shown that his model of this brain function -- that we use our knowledge of motion and shape combine together to recognize faces and facial expressions -- closely matches the test results of people he studied while he was at Purdue University.

Martinez photographed the faces of 126 volunteers to create a face database. Each volunteer was photographed with four different facial expressions -- happy, angry, screaming, and neutral -- with different lighting, and with and without different accessories including sunglasses.

For the work just published in Vision Research, Martinez showed photos from the database to two groups of volunteers. The first group was tested to see how fast they could decide if two faces -- one with a neutral expression and one happy, angry, or screaming -- belonged to the same person.

The second group of volunteers was tested to see how fast they could identify the facial expression -- either happy, angry, screaming, or neutral -- shown in a series of photos.

Martinez timed their responses, and compared the results to his computer model. Though the model depicted a much-simplified version of human visual processing, it was unique because it included a module for calculating how much the facial muscles had moved between the different expressions.

If the human brain takes the time to “calculate” movement of the face, he reasoned, then the humans and the computer model would experience similar delays when identifying faces.

Just like the computer model, the human volunteers were quicker to recognize faces and facial expressions that involved little movement, and slower to recognize expressions that involved a lot of movement.

In the first experimental group -- the one that had to decide if two faces belonged to the same person -- volunteers most quickly matched neutral faces to neutral faces (0.8 seconds), followed by neutral to angry (just under 0.9 seconds), neutral to smiling (0.9 seconds), and neutral to screaming faces (just over 1 second).

In the second group -- the one that had to identify which of the four expressions they were looking at -- they most quickly picked out happy faces (1.3 seconds), then neutral (1.5 seconds), angry (1.9 seconds), and screaming faces (barely under 2 seconds).

Although the computer model’s “reaction time” was measured in computer cycles and iterations rather than seconds, it identified faces and expressions in the same order as the human volunteers for both tests.

Martinez model also explained why the human volunteers were able to match angry faces faster in the first test, but identify happy faces faster in the second test.

Except for very subtle features -- such as a furrowed brow, pursed lips, or squinting eyes -- most angry faces aren’t that different from neutral faces. So matching a neutral face to an angry face is easier.

But when the only task is to identify an expression, identifying happiness is easier because in general we need only examine whether one feature -- the mouth -- is smiling.

Ultimately, this work could lead to computers that recognize the faces of authorized users -- eliminating the need for passwords, which sometimes be guessed or obtained by unauthorized users. Computers could also take cues from a user’s emotional state.

“You can imagine a computer saying, ‘you seem upset, what can I do to help?’” Martinez said.

It could improve age-progression software, which is often used by law enforcement to find missing children. Computers would also be able to identify criminals who wear common disguises such as glasses or scarves.

This work was partially supported by the National Science Foundation.



Contact: Aleix Martinez, (614) 688-8225; Martinez.158@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Ohio State University.
Further information:
http://www.osu.edu/researchnews/archive/compvisn.htm
http://sampl.eng.ohio-state.edu/%7Ealeix/
http://eewww.eng.ohio-state.edu/

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>