Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiofrequency, chemotherapy prove effective duo in destroying tumors

20.06.2003


New study presented today at Image-guided Therapies media briefing



Radiofrequency ablation (RFA) combined with chemotherapy is currently being used to treat malignant liver tumors at a Boston hospital on the basis of results from a new study appearing in the July issue of the journal Radiology. The minimally invasive, outpatient procedure is performed on primary liver cancer or colon cancer tumors that have spread to the liver of patients at Beth Israel Deaconess Medical Center.

"It’s exciting that a simple, image-guided technique, along with chemotherapy, can enhance the area of tumor killed," said Jonathan B. Kruskal, M.D., Ph.D., section chief of abdominal imaging at Beth Israel Deaconess and associate professor of radiology at Harvard Medical School in Boston. "Our research shows that we are now able to treat larger tumors with this combined therapy."


RFA uses heat to destroy malignant tumors. After sedating the patient, radiologists locate the tumor with computed tomography (CT) or magnetic resonance (MR) imaging. A four- to 10-inch-long electrode, similar to a biopsy needle, is guided into the center of a tumor via imaging.

The electrode delivers radiofrequency current to heat and destroy the tumor tissue.

Dr. Kruskal co-authored the Radiology study, which indicated that with the addition of chemotherapy, tumors larger than five centimeters can be treated with RFA and that partially destroying tumors with RFA slows tumor growth and improves survival.

"Large tumors are typically not considered amenable to RFA treatment. Our results suggest that they may well be," he said.

The research, performed by Guiseppe D’Ippolito, M.D., and colleagues under the direction of S. Nahum Goldberg, M.D., the senior author of the study, was the first randomized controlled study on combined RFA and chemotherapy treatments in animals. Dr. Kruskal presented it today during a Radiological Society of North America (RSNA) media briefing on image-guided therapies.

Liposomal doxorubicin (a chemotherapeutic agent) and RFA were used to treat breast tumors implanted into 49 rats and grown from 10 days to two weeks. The animals were divided into four treatment groups: RFA only, doxorubicin only, RFA combined with doxorubicin, and a control group receiving no treatment.

Doxorubicin is dispensed in fat droplets, which circulate through the body and find the tumor, helping to destroy it. When doxorubicin was combined with RFA, results showed a reduction in tumor growth rates and a tripling in the average survival rate compared with the group receiving no treatment.

"The survival of animals increased from nine days in the control group to 27 days with the combined therapy," Dr. Kruskal said. "This study opens up the possibilities of using other drug cocktails with RFA to kill tumors and to treat tumors outside of the liver." RFA is a good option for treating liver tumors. Many people with liver tumors are not appropriate candidates for surgery because their tumors are too widespread or inaccessible or because of their poor physical health. They also may not be candidates for a liver transplant.

A liver tumor can be ablated with radiofrequency in about 30 to 60 minutes, without affecting the liver’s normal tissue. RFA is a one- to three-hour outpatient procedure that can be used to treat recurrent liver tumors. It is less risky than surgery, can be performed without general anesthesia and causes minimal discomfort. Patients can most often go home the same day.

Risks associated with RFA include bleeding and injury to other organs and "post-ablation" syndrome, which includes flu-like symptoms.

Beth Israel Deaconess is currently the only hospital providing combined RFA and liposomal chemotherapy, according to Dr. Kruskal. Approximately 25 patients have been treated with the combined therapy by Dr. Goldberg, director of the tumor ablation program at Beth Israel Deaconess, and they are seeing a 25 percent increase in the volume of tumor destruction. Based on these results, Drs. Goldberg and Kruskal are planning further studies, including a large clinical study comparing RFA alone to RFA combined with liposomal chemotherapy.

"RFA has been used worldwide for the last five or six years to treat tumors up to five centimeters," Dr. Kruskal said. "With the new combined therapy, where patients are given doxorubicin intravenously prior to the start of RFA, physicians will be able to treat larger tumors, up to eight centimeters."

The purpose of this study, partly funded by the National Cancer Institute and the National Institutes of Health, was to determine whether combined intravenous liposomal doxorubicin and RFA decreased tumor growth and increased endpoint survival – that is, from the start of treatment until the tumor reached three centimeters.

Following treatment, tumors were measured every two to three days until they reached three centimeters. The rats that received RFA and doxorubicin had a mean endpoint survival of 27 days. Rats receiving either RFA or injections of doxorubicin had an endpoint survival of 16 days. The control group, with no treatment, reached endpoint survival at 10 days.

Maureen Morley | EurekAlert!
Further information:
http://radiology.rsnajnls.org
http://www.RadiologyInfo.org.

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>