Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Findings Help Explain the Dynamics Between The Dominant and Non-Dominant Arm

19.03.2003


The phrase, “the right hand doesn’t know what the left hand is doing,” has its roots in a passage of the Bible (Matthew 6:3). If there is truth to this old saying, the reasons may have as much to do with the way the brain obtains information from the arms as it does from the observations of ancient scribes.



Background

Most individuals are either left- or right-handed. How the skills they have learned from the dominant arm (or hand) are transferred to the non-dominant arm have long intrigued physiologists and neurologists.


The transfer of a skill learned in one hand to the other hand has been used as evidence for the role of the brain’s hemispheres in controlling that skill. The movement of knowledge from the dominant to the nondominant arm (D ->ND) has been interpreted as confirmation of the brain’s ability to encode an experience in the dominant hemisphere with the dominant hand and to influence the performance of the nondominant hand. Many researchers believe that this process is accomplished either through connections across both hemispheres or through the same side of the brain. Other scientists believe that transfer in the opposite direction reflects a dominance of the right hemisphere (in right-handers) for some aspects of motor control, so both directions of transfer can be explained with a single model.

Little is known about the involvement of the body’s subcortical structures (such as the cerebellum, and spinal cord) in this process. While it is possible to get some indication of the role of the cerebral hemispheres through the study of subjects with a sectioned corpus callosum, this has rarely been pursued in the case of motor learning and transfer. Accordingly, a team of researchers wondered whether learning a force field with one arm generalizes to the other arm.

Previous observations have found that since learning generalizes in a muscle-like, intrinsic coordinate system for the trained arm, there was little expectation that there would be generalization to the contralateral arm. The scientists found the very surprising result that there was not only strong generalization, but also that it seemed to be with respect to an extrinsic coordinate. To investigate the neural basis of this generalization, they examined an individual who had undergone a complete section of the corpus callosum. Their results provide a significant challenge to current models of how the brain learns reaching movements.

The authors of “Learned Dynamics of Reaching Movements Generalize From Dominant to Nondominant Arm,” are Sarah E. Criscimagna-Hemminger, Opher Donchin, and Reza Shadmehr, from the Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD; and Michael S. Gazzaniga, at the Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH. Their findings appear in the January 2003 edition of the Journal of Neurophysiology.

Methodology

Quantifying inter-arm generalization allowed testing of the sensitivity of these elements to the other arm. Two possible coordinate systems were considered: (1) an intrinsic (joint) representation should generalize with mirror symmetry reflecting the joint’s symmetry and (2) an extrinsic representation, which should preserve the task’s structure in extrinsic coordinates. Both coordinate systems of generalization were compared with a naïve control group.

The researchers tested transfer in right-handed subjects both from dominant to nondominant arm (D ->ND) and vice versa (ND ->D). This led to a 2 × 3 experimental design matrix: transfer direction (D ->ND/ND ->D) by coordinate system (extrinsic, intrinsic, control). Generalization occurred only from dominant to nondominant arm and only in extrinsic coordinates. To assess the dependence of generalization on callosal inter-hemispheric communication, the researchers tested commissurotomy (brain surgery) patient JW. JW showed generalization from dominant to nondominant arm in extrinsic coordinates.

Results

This study produced three main findings.

  • First, learning to compensate for dynamics of reaching movements in right-handed individuals generalizes from dominant arm to the nondominant arm (D ->ND) but not vice versa.

  • Second, D ->ND generalization in the workspace that we tested (near the midline) is in an extrinsic, Cartesian-like coordinate system.

  • Third, generalization of this motor skill does not depend on transfer of information between the hemispheres via the corpus callosum.

Conclusions

The results suggest that when the dominant right arm is used in learning dynamics, the information could be represented in the left hemisphere with neural elements tuned to both the right arm and the left arm. In contrast, learning with the nondominant arm seems to rely on the elements in the nondominant hemisphere tuned only to movements of that arm.


Source: January 2003 edition of the Journal of Neurophysiology.

The American Physiological Society (APS) was founded in 1887 to foster basic and applied science, much of it relating to human health. The Bethesda, MD-based Society has more than 10,000 members and publishes 3,800 articles in its 14 peer-reviewed journals every year.

Donna Krupa | APS
Further information:
http://www.the-aps.org/press_room/journal/pr3-17-3.htm

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>