Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visual attention attuned to grabbable objects

17.03.2003


Dartmouth research group has found a new and unexpected way our attention can be grabbed – by grabbable objects. Their study, which appears in the March 17 advance online issue of Nature Neuroscience, demonstrates that objects we typically associate with grasping, such as screwdrivers, forks or pens, automatically attract our visual attention, especially if these items are on a person’s right-hand side.



In the brain, there are two primary visual pathways, one for identifying objects (perception) and one to guide your arms and legs based on what you see (action). To better understand how these two systems may interact, the Dartmouth team studied whether visual perception, specifically peripheral visual attention, influences motor systems in the brain.

"People have studied peripheral vision and how it helps perception, but nobody really talked about it in terms of helping action," says Todd C. Handy, the lead author and a research assistant professor at the Center for Cognitive Neuroscience at Dartmouth. "There are certain things that we all know attract our attention, like flashing lights and loud noises. Yet, think about how often we grab things without directly looking at them. Now here’s evidence that, to help us do this, grabbable objects can literally grab our attention. There’s a clear association."


The researchers devised a simple test to measure this connection. They asked their subjects to look at a computer screen with two objects: one was something graspable, like a tool, the other was not graspable, like a cloud or a sailboat. After about a second, a set of horizontal bars flashed over one of the pictures. While concentrating in the center of the screen, the subjects were told to indicate whether the bars appeared on the left or right. The researchers determined where attention was focused when the bars flashed by measuring the electrical activity in the brain with an electroencephalogram (EEG).

"When the bars flashed over a graspable object, the EEG response in the visual cortex was more intense," says Handy. "It shows evidence of attention being specifically drawn to those objects. Interestingly, the effect was more profound when the tool was on the right. It suggests that attention is more strongly drawn to grabbable objects when they are on our right."

Handy’s team then used fMRI (functional magnetic resonance imaging), a method that precisely identifies areas of brain activity, to confirm their results. They found that when the tool appeared on the right, the brain’s classic motor areas responded to it. If the tool was on the left, the motor areas weren’t as active. According to Handy, this indicates that when graspable items are on the right, the motor system recognizes that there is something to grab and attention is drawn automatically to that location.

"People had already shown that simply viewing graspable objects activates motor areas in the brain," explains Handy. "What we didn’t know was that graspable items can affect visual attention, and that it matters where these things are in visual space."

The team is now trying to understand whether being right-handed or left-handed influences visual attention and motor activity.

Handy’s co-authors on the paper include Scott T. Grafton, professor of psychological and brain sciences and the Director of the Dartmouth Brain Imaging Center; Neha M. Shroff, Dartmouth alum from the Class of ’02; Sarah Ketay, research assistant; and Michael S. Gazzaniga, Dean of the Faculty of Arts and Sciences at Dartmouth and a professor of psychological and brain sciences.


This study was funded by the National Institutes of Health.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>