Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer patients who scored well on memory tests – show unique compensatory brain activity

05.02.2003


Study is first link ’compensatory prefrontal network’ to better performance on memory tests



A group of Canadian researchers has found the most direct evidence to date that people with early-stage Alzheimer Disease can engage additional areas in the brain to perform successfully on memory tests.

Led by Dr. Cheryl Grady, a senior scientist with The Rotman Research Institute at Baycrest Centre for Geriatric Care, the study is published in the February 1, 2003 issue of the Journal of Neuroscience.


Alzheimer’s is a progressive, degenerative disease that affects an individual’s ability to think, remember, understand and make decisions. People with early-stage Alzheimer’s begin to experience problems with their episodic and semantic memory. Semantic refers to the accumulation of general world knowledge gained over a lifetime (for example, names of countries, famous people, major historical events). Episodic refers to events that one experiences throughout his/her life (for example, having visited the dentist yesterday, or graduating from college back in 1950).

While previous neuroimaging studies have confirmed that individuals in the early stages of the disease show ’increased’ activity in the brain’s prefrontal regions when performing cognitive tests (compared with healthy age-matched controls), Dr. Grady and her team of investigators have found the first direct link between this compensatory brain activity and successful performance on semantic and episodic memory tests.

"We found that patients who were able to recruit the prefrontal cortex of the brain ’to a greater degree’ than other patients, performed more accurately on memory tests," says Dr. Grady, who is also Professor in Psychiatry and Psychology at the University of Toronto.

While she cautioned that this compensatory effect does not last forever and diminishes as the disease progresses, she hopes her team’s findings will inspire further research. "The development of compensatory responses in relation to early cognitive changes in Alzheimer’s is an area in need of more investigation," she says. "The goal, until more definitive preventive treatment is found, is to develop more effective treatments that extend this compensatory effect and delay the degenerative effects of Alzheimer’s for longer periods."

In the study, 12 healthy older adults and 11 older patients with probable early-stage Alzheimer’s participated in a series of semantic and episodic memory tasks that were flashed on a computer screen. All of the Alzheimer’s patients were taking medication for their cognitive impairment. Participants’ brain activity was monitored using positron emission tomography (PET), which measures blood flow to various regions of the brain.

In the semantic exercise, a word or object appeared on either the right or left side of the screen, and a visual noise pattern appeared on the other side. Participants were instructed to make a living/non-living decision about each object or word by pressing the left mouse button if the object/word represented something living, and the right button if it were non-living. During the episodic recognition task, objects or words were presented on either side of the screen -- one new stimulus and one that was seen previously during the semantic task. Participants pressed the button corresponding to the side of the screen on which the ’old’ item was presented. All trials lasted four seconds, with a one-second interval blank screen.

Overall, Alzheimer’s patients performed less accurately on the semantic and episodic tasks compared to the normal, healthy controls. However, the range of scores was quite large in the Alzheimer group, with some performing poorly and others performing within the normal range. For those patients who did better on the memory tasks, researchers found that their prefrontal network activity was more expansive compared to the error-prone patients. This additional activity was happening in the right frontal and temporoparietal areas. It was a unique neural pattern not found in the normal, healthy controls either.

The study was funded by the Canadian Institutes of Health Research and the Alzheimer Society of Canada. The research team included Dr. Sandra Black, Head of Neurology and senior scientist at Sunnybrook and Women’s College Health Sciences Centre, as well as other scientists with The Rotman Research Institute at Baycrest Centre for Geriatric Care. Dr. Black is also a senior scientist at the Rotman. Baycrest is fully affiliated with the University of Toronto.

Dr. Cheryl Grady is internationally-recognized for her research which uses brain imaging to explore the functional changes that occur in aging and how these relate to changes in behaviour. In previous research, she has identified similar compensatory activity going on in the frontal regions of healthy older adults as they performed memory and recognition tests alongside younger adults. As brains age, do they find ways to compensate for cognitive decline? The answer, says Dr. Grady, could have exciting implications for memory rehabilitation.

Kelly Connelly | EurekAlert!
Further information:
http://www.baycrest.org/

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>