Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Removing Portion of Spleen Effective in Treating Inherited Childhood Anemias

31.01.2003


Researchers from Duke University Medical Center and the Medical College of Wisconsin have shown that removing a portion, instead of all, of the spleen, can successfully treat children with a variety of congenital anemias while preserving important splenic immune function.



In the largest study of its kind in the U.S., the researchers performed the surgery, known as a partial splenectomy, on 25 children with congenital forms of anemia caused by abnormal red blood cells. Typically, these children suffer from fatigue, jaundice and extreme vulnerability to infections that can require repeated hospital or physician visits. Many also need repeated blood transfusions.

The spleen has two main functions: it produces immune system cells that protect the body from infection, and it also serves to clear unwanted materials -- including defective blood cells -- from the bloodstream. The majority of the children in the current study had hereditary spherocytosis, a condition marked by misshapen and rigid red blood cells. Because of their shape and rigidity, the red blood cells become trapped and destroyed in the spleen, resulting in an enlarged spleen and a reduction in the number of oxygen-carrying red blood cells.


?Many children with these disorders do fine with little or no intervention, but for those who have repeated infections and medical crises, their quality of life can be very poor,? said Duke pediatric surgeon Henry Rice, M.D., principal investigator for the study. ?Some of these patients receive total splenectomies, which can relieve many of the symptoms, but can leave patients at risk of fatal infections.?

?There has been a resurgence in doing partial splenectomies in Europe for the past 10 years, but it still remains a very controversial procedure in the U.S.,? Rice continued. ?The goal is to take away enough of the spleen to help relieve the anemia and its symptoms, while leaving enough to maintain a viable immune function. Until now, there have been no large and conclusive studies showing the procedure can be performed safely with good outcomes.?

Partial splenectomies have been slow to catch on in the U.S. for a number of reasons, according to Rice. First, the operation itself is technically difficult to perform. Secondly, somewhat like the liver, the spleen can regenerate itself, so physicians have worried that even if they perform a successful procedure, the spleen will eventually return to its original size and function.

?In our group of patients, some of which have been followed as long as six years, we have seen some regrowth of spleen tissue, but it has not been associated with the return of symptoms,? Rice said. ?The regrowth appears to vary widely from patient to patient, and it is not certain whether the new tissue acts exactly like the original tissue.?

To date, none of the 25 children who have received the operation have needed another procedure, and none have succumbed to serious infections, Rice said.

While the procedure shows promise in improving the quality of life for these patients, Rice points out that it does not address the cause of these disorders, which have a genetic basis.

?However, these tend to be very sick children with a poor quality of life,? Rice said. ?We hope that this study will provide the necessary scientific basis to convince other surgeons that despite the difficulty of the procedure, it can benefit this group of children.?

The surgeons removed between 80 to 90 percent of the spleen in the children followed in the study. According to Rice, a total splenectomy takes about one hour to perform, while a partial splenectomy takes about two hours. In both procedures, patients receive appropriate immunizations and antibiotics prior to surgery to reduce the risks of infections.

Of the 25 children who received partial splenectomies, 16 had hereditary spherocytosis, while nine had other red blood cell disorders, including pyruvate kinase deficiency and thalassemia. The children ranged in age from 1 to 14 years of age. As humans age, Rice said, the spleen becomes less important to maintaining overall good health.

While the results of current experience of the Duke and Wisconsin surgical teams appear promising, Rice believes that a prospective, long-term trial is needed to further refine the role of partial splenectomies in hereditary anemias, as well as possibly expanding the number of patients who could benefit to include those with similar rare disorders, including some forms of sickle cell disease.

The study was supported by the surgery departments at Duke and the Medical College of Wisconsin.

Other members of the research team included, from Duke, Russell Ware, M.D., and Michael Skinner, M.D. Other members were Keith Oldham, M.D., and Cheryl Hillery, M.D., Children?s Hospital of Wisconsin, and Sara O?Hara, M.D., Children?s Medical Center of Cincinnati.

Richard Merritt | Duke University Medical Center
Further information:
http://dukemednews.org

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>