Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify brain regions where nicotine affects attention, other cognitive skills

14.01.2003


Nicotine administration in humans is known to sharpen attention and to slightly enhance memory. Now scientists, using functional magnetic resonance imaging (MRI), have identified those areas of the brain where nicotine exerts its effects on cognitive skills.

Their findings suggest that nicotine improves attention in smokers by enhancing activation in the posterior cortical and subcortical regions of the brain--areas traditionally associated with visual attention, arousal, and motor activation. This study provides the first evidence that nicotine-induced enhancement of parietal cortex activation is associated with improved attention.

The investigators used functional MRI to visualize nicotine’s effects on the brain during a rapid visual information-processing (RVIP) task -- a task that requires sustained attention and working memory. Fifteen smokers with and without a 21- mg transdermal nicotine patch performed the RVIP task while undergoing MRI screening. The subjects performed the RVIP task twice--once with a placebo patch and once with a nicotine patch--and were scanned during each session. They smoked their last cigarette 15 minutes before performing the RVIP task.



When smokers were given a placebo patch for the first scan and a nicotine patch for the second scan, there was improvement in task performance between the two scans. When smokers were given a nicotine patch for the first scan and a placebo patch for the second scan, there was no difference in their performance, suggesting that nicotine and practice interact.

Study findings also suggest that nicotine helps focus attention on task demands by shifting cognitive resources from less "used" parts of the brain to regions required for task performance.

What it means: This study adds to the understanding of the effects of nicotine on the brain. Such understanding helps explain both nicotine’s addictive properties and potential therapeutic applications.

Dr. Elliot A. Stein, Neuroimaging Research Branch, Intramural Research Program, NIDA, and colleagues from the Medical College of Wisconsin and the Institute of Psychiatry in London published the study in the October 24, 2002 issue of Neuron.

Contact: Michelle Person
e-mail: mperson@mail.nih.gov

Michelle Person | EurekAlert!

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>