Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infants Build Knowledge of Their Visual World on Statistics

26.11.2002


Baby’s first look at the world is likely a dizzying array of shapes and motion that are meaningless to a newborn, but researchers at the University of Rochester have now shown that babies use relationships between objects to build an understanding of the world. By noting how often objects appear together, infants can efficiently take in more knowledge than if they were to simply see the same shapes individually, says the paper published in the current issue of Proceedings of the National Academy of Sciences.



Roughly 100 babies, all about nine months of age, watched a series of shapes such as squares, circles, and arrows appearing together on a screen while researchers watched the babies’ attention. József Fiser postdoctoral fellow and Richard N. Aslin, professor of brain and cognitive sciences, wanted to see if the nine-month-olds would pay more attention to the pairs of shapes that occurred most often in a crowded scene.

"It’s long been assumed that we use relationships among parts of scenes to learn which parts form whole objects, but the idea has never been tested, nor was it clear how early this ability develops," says Fiser. "This research shows that building a concept of the world by recognizing relationships among shapes in images is possibly innate, and a very essential ability in babies."


To plumb the minds of infants, Fiser and Aslin had to first devise an experiment that would test an infant’s interest-a notoriously difficult enterprise given that babies are poor communicators of their thoughts. Fiser and Aslin first tested their experiment on college students, asking them to sit in a secluded room and watch a video screen for 10 to 15 minutes. The students watched groups of six shapes appear on the screen for a second or two before being replaced by a new set. The students were then asked to pick out pairs of shapes that they saw together most often in the previous series. Most students balked, saying they couldn’t remember the frequency of pairs from the hundreds of scenes they’d just watched. But when pressed to pick out pairs, the students usually picked shapes that did indeed occur most often together in the series. "This was strong evidence that students had an ability to sense and automatically extract relationships visually," says Fiser.

The next step was to see if nine-month-olds would display this same ability. The babies sat on a parent’s lap in the room while the shapes appeared three at a time on a screen in front of them. After a pause, the shapes appeared again in pairs, and the researchers timed how long the infant stared at each pair. Fiser and Aslin wanted to know if they’d stare longer at the pairs that appeared more often together in the first series, or stare for a shorter time, or whether there was no correlation at all.

When the results of the 72 babies (the rest were dismissed because they wouldn’t cooperate with the pursuit of science) were tallied, a clear correlation emerged. The babies paid more attention when two shapes that had been paired in the first series were shown again together. The infants were using a sort of subconscious statistical analysis of the shapes to pick out those that were familiar, just as the students did.

"In order to make sense of the unknown you must be able to learn new things and represent them to yourself in an efficient way," says Fiser. "You don’t want a mechanism that will tell you that leaves are always found on cars just because you happened to see a leaf on a car once. You want a mechanism that will tell you that cars can exist without leaves and vice versa, while at the same time telling you that cars always come with wheels, for instance."

If a baby sees a leaf on a car, she would build a relationship between the two, perhaps calling the combination a "leafcar." But she might then see several cars without leaves on them and so the concept of leafcar is weakened as she unconsciously realizes that statistically, the concept of leafcar is more and more useless. Noting that every car she sees has wheels, however, becomes statistically more and more useful as it is reinforced with every new car she sees. This relationship-identification is important because the baby can build her knowledge base on it. When she sees a wheelbarrow, she’ll unconsciously note that while all cars have wheels, not all wheels have cars, and a new concept of wheels will begin to emerge. In this way, the frequency of relationships, and the predictability between visual objects allows her to build knowledge on knowledge in a hierarchical manner.

Fiser and Aslin are working on understanding more aspects of what innate ways we have of dealing with the visual world, including studying the very basis of the experiments themselves-why children pay attention at all. Fiser believes that simpler tests essentially bore infants, so the babies pay more attention to new stimuli. In more complex tests, however, it appears that babies tend to focus on those events that are familiar because they are trying to make sense of the scene and are using familiar sights to understand relationships and thus build their knowledge. Fiser hopes to elucidate this distinction further to shed more light on how our brain learns to encode the visual environment around us.

This research was funded by the National Science Foundation.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu/

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>