Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infants Build Knowledge of Their Visual World on Statistics

26.11.2002


Baby’s first look at the world is likely a dizzying array of shapes and motion that are meaningless to a newborn, but researchers at the University of Rochester have now shown that babies use relationships between objects to build an understanding of the world. By noting how often objects appear together, infants can efficiently take in more knowledge than if they were to simply see the same shapes individually, says the paper published in the current issue of Proceedings of the National Academy of Sciences.



Roughly 100 babies, all about nine months of age, watched a series of shapes such as squares, circles, and arrows appearing together on a screen while researchers watched the babies’ attention. József Fiser postdoctoral fellow and Richard N. Aslin, professor of brain and cognitive sciences, wanted to see if the nine-month-olds would pay more attention to the pairs of shapes that occurred most often in a crowded scene.

"It’s long been assumed that we use relationships among parts of scenes to learn which parts form whole objects, but the idea has never been tested, nor was it clear how early this ability develops," says Fiser. "This research shows that building a concept of the world by recognizing relationships among shapes in images is possibly innate, and a very essential ability in babies."


To plumb the minds of infants, Fiser and Aslin had to first devise an experiment that would test an infant’s interest-a notoriously difficult enterprise given that babies are poor communicators of their thoughts. Fiser and Aslin first tested their experiment on college students, asking them to sit in a secluded room and watch a video screen for 10 to 15 minutes. The students watched groups of six shapes appear on the screen for a second or two before being replaced by a new set. The students were then asked to pick out pairs of shapes that they saw together most often in the previous series. Most students balked, saying they couldn’t remember the frequency of pairs from the hundreds of scenes they’d just watched. But when pressed to pick out pairs, the students usually picked shapes that did indeed occur most often together in the series. "This was strong evidence that students had an ability to sense and automatically extract relationships visually," says Fiser.

The next step was to see if nine-month-olds would display this same ability. The babies sat on a parent’s lap in the room while the shapes appeared three at a time on a screen in front of them. After a pause, the shapes appeared again in pairs, and the researchers timed how long the infant stared at each pair. Fiser and Aslin wanted to know if they’d stare longer at the pairs that appeared more often together in the first series, or stare for a shorter time, or whether there was no correlation at all.

When the results of the 72 babies (the rest were dismissed because they wouldn’t cooperate with the pursuit of science) were tallied, a clear correlation emerged. The babies paid more attention when two shapes that had been paired in the first series were shown again together. The infants were using a sort of subconscious statistical analysis of the shapes to pick out those that were familiar, just as the students did.

"In order to make sense of the unknown you must be able to learn new things and represent them to yourself in an efficient way," says Fiser. "You don’t want a mechanism that will tell you that leaves are always found on cars just because you happened to see a leaf on a car once. You want a mechanism that will tell you that cars can exist without leaves and vice versa, while at the same time telling you that cars always come with wheels, for instance."

If a baby sees a leaf on a car, she would build a relationship between the two, perhaps calling the combination a "leafcar." But she might then see several cars without leaves on them and so the concept of leafcar is weakened as she unconsciously realizes that statistically, the concept of leafcar is more and more useless. Noting that every car she sees has wheels, however, becomes statistically more and more useful as it is reinforced with every new car she sees. This relationship-identification is important because the baby can build her knowledge base on it. When she sees a wheelbarrow, she’ll unconsciously note that while all cars have wheels, not all wheels have cars, and a new concept of wheels will begin to emerge. In this way, the frequency of relationships, and the predictability between visual objects allows her to build knowledge on knowledge in a hierarchical manner.

Fiser and Aslin are working on understanding more aspects of what innate ways we have of dealing with the visual world, including studying the very basis of the experiments themselves-why children pay attention at all. Fiser believes that simpler tests essentially bore infants, so the babies pay more attention to new stimuli. In more complex tests, however, it appears that babies tend to focus on those events that are familiar because they are trying to make sense of the scene and are using familiar sights to understand relationships and thus build their knowledge. Fiser hopes to elucidate this distinction further to shed more light on how our brain learns to encode the visual environment around us.

This research was funded by the National Science Foundation.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu/

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>