Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU study finds computers greatly reduce prescription errors

05.11.2002


Computer prescriptions are three times less likely to contain errors than handwritten prescriptions



Have you ever received a drug prescription from a physician that looked like chicken scratch? You’re not alone. Pharmacists sometimes have a hard time reading prescriptions and in some cases they also are incomplete. To avoid errors, pharmacists have to spend precious time tracking down prescribers to clarify illegible or possibly inaccurate prescriptions. A new study by researchers at Oregon Health & Science University shows that prescriptions written on a computer are less likely to contain errors.

A study by the OHSU School of Medicine’s Department of Emergency Medicine study found that prescriptions initially entered into a computer reduce errors in the prescription by one-third and are five times less likely to require pharmacist clarification than handwritten prescriptions. The study was published in the November 2002 issue of Academic Emergency Medicine (www.aemj.org), published by Hanley & Belfus.


"This new computer system is really the foundation for ongoing improvements in safe prescribing practice," said Kenneth E. Bizovi, M.D., assistant professor of emergency medicine in the OHSU School of Medicine, toxicologist and emergency physician.

There are only a few studies on prescription error rates, and none conducted an emergency department. OHSU’s researchers thought that a new prescription computer program, implemented in the hospital’s emergency department March 2000, provided the perfect opportunity to investigate a more effective method of prescribing medications. The team compared standard handwritten prescriptions created before the computer program was implemented with computer-assisted prescriptions created after implementation. The computer program allowed prescibers the ability to choose a drug from a list of available medications. Each prescription contained necessary information, such as dose, quantity, frequency and amount to dispense. This system greatly reduces the possibility of writing a prescription that is incomplete or that contains a formulation that does not exist.

For example, instead of prescribing 500 mg of ibuprofen, which is not an available dose, a physician can look at the doses that do exist and choose from those. This reduces the risk of dosing errors and reduces the need for pharmacists to clarify the prescription.

Patient information, such as name, medical record number and age, were also included in the computer-written prescription. This information, along with the prescription and prescriber’s name, was then printed legibly for a pharmacist to read. All the information becomes part of the patient’s computer medical record instantly. This is an improvement from the standard handwritten format, which uses a prescription pad, a stamp of the patient’s information and the handwritten prescription, creating only one copy of the prescription and requiring a separate entry into the medical record.

The research team hoped the computer-assisted prescription system would create legible prescriptions that decreased errors related to dosing, missing information, incorrect information, legibility and ordering of drugs that weren’t available. These types of errors require a pharmacist to track down the prescriber to clarify before the prescription can be filled. Although this occurs infrequently, it takes extra time from the pharmacist and could lead to increase time to get a prescription filled.

The study proved their theory. With the assistance of the OHSU Hospital Pharmacy, researchers were able to track the notations on the prescription made by pharmacists when making a clarification. Of the 2,326 handwritten prescriptions filled by OHSU Hospital’s Pharmacy before implementation of the computer program, 2.3 percent of them contained errors. The OHSU Hospital Pharmacy received 1,594 computer-assisted prescriptions, only 0.8 percent of which contain errors that required clarification by a pharmacist.

Even some pharmacists commented on the improvement. "They said you could read the prescription, which was great. They are very concerned about legibility," said Bizovi.

"OHSU is at the forefront in using the power of computer technology to ensure patient safety," said Christine Cassel, M.D., dean of the OHSU School of Medicine and a co-author of the 1999 Institute of Medicine report "To Err is Human," which prompted a national dialogue on medical errors. "In the IOM report, experts emphasized that information science can help create systems which deliver patient care of higher quality and also keep costs down because they are more efficient."

OHSU’s ED is one of the few around the country using this prescription program. As more medical clinics acquire computerized systems, Bizovi feels the computer-generated prescriptions will prove to be effective in reducing errors in many medical practices. Since the time of the study the, OHSU Department of Emergency Medicine has integrated patient allergies into the prescription, adding one more safety improvement to its prescribing practices.

Christine Pashley | EurekAlert!
Further information:
http://www.ohsu.edu/news/110402scriptImages.html.
http://www.ohsu.edu/

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>