Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU study finds computers greatly reduce prescription errors

05.11.2002


Computer prescriptions are three times less likely to contain errors than handwritten prescriptions



Have you ever received a drug prescription from a physician that looked like chicken scratch? You’re not alone. Pharmacists sometimes have a hard time reading prescriptions and in some cases they also are incomplete. To avoid errors, pharmacists have to spend precious time tracking down prescribers to clarify illegible or possibly inaccurate prescriptions. A new study by researchers at Oregon Health & Science University shows that prescriptions written on a computer are less likely to contain errors.

A study by the OHSU School of Medicine’s Department of Emergency Medicine study found that prescriptions initially entered into a computer reduce errors in the prescription by one-third and are five times less likely to require pharmacist clarification than handwritten prescriptions. The study was published in the November 2002 issue of Academic Emergency Medicine (www.aemj.org), published by Hanley & Belfus.


"This new computer system is really the foundation for ongoing improvements in safe prescribing practice," said Kenneth E. Bizovi, M.D., assistant professor of emergency medicine in the OHSU School of Medicine, toxicologist and emergency physician.

There are only a few studies on prescription error rates, and none conducted an emergency department. OHSU’s researchers thought that a new prescription computer program, implemented in the hospital’s emergency department March 2000, provided the perfect opportunity to investigate a more effective method of prescribing medications. The team compared standard handwritten prescriptions created before the computer program was implemented with computer-assisted prescriptions created after implementation. The computer program allowed prescibers the ability to choose a drug from a list of available medications. Each prescription contained necessary information, such as dose, quantity, frequency and amount to dispense. This system greatly reduces the possibility of writing a prescription that is incomplete or that contains a formulation that does not exist.

For example, instead of prescribing 500 mg of ibuprofen, which is not an available dose, a physician can look at the doses that do exist and choose from those. This reduces the risk of dosing errors and reduces the need for pharmacists to clarify the prescription.

Patient information, such as name, medical record number and age, were also included in the computer-written prescription. This information, along with the prescription and prescriber’s name, was then printed legibly for a pharmacist to read. All the information becomes part of the patient’s computer medical record instantly. This is an improvement from the standard handwritten format, which uses a prescription pad, a stamp of the patient’s information and the handwritten prescription, creating only one copy of the prescription and requiring a separate entry into the medical record.

The research team hoped the computer-assisted prescription system would create legible prescriptions that decreased errors related to dosing, missing information, incorrect information, legibility and ordering of drugs that weren’t available. These types of errors require a pharmacist to track down the prescriber to clarify before the prescription can be filled. Although this occurs infrequently, it takes extra time from the pharmacist and could lead to increase time to get a prescription filled.

The study proved their theory. With the assistance of the OHSU Hospital Pharmacy, researchers were able to track the notations on the prescription made by pharmacists when making a clarification. Of the 2,326 handwritten prescriptions filled by OHSU Hospital’s Pharmacy before implementation of the computer program, 2.3 percent of them contained errors. The OHSU Hospital Pharmacy received 1,594 computer-assisted prescriptions, only 0.8 percent of which contain errors that required clarification by a pharmacist.

Even some pharmacists commented on the improvement. "They said you could read the prescription, which was great. They are very concerned about legibility," said Bizovi.

"OHSU is at the forefront in using the power of computer technology to ensure patient safety," said Christine Cassel, M.D., dean of the OHSU School of Medicine and a co-author of the 1999 Institute of Medicine report "To Err is Human," which prompted a national dialogue on medical errors. "In the IOM report, experts emphasized that information science can help create systems which deliver patient care of higher quality and also keep costs down because they are more efficient."

OHSU’s ED is one of the few around the country using this prescription program. As more medical clinics acquire computerized systems, Bizovi feels the computer-generated prescriptions will prove to be effective in reducing errors in many medical practices. Since the time of the study the, OHSU Department of Emergency Medicine has integrated patient allergies into the prescription, adding one more safety improvement to its prescribing practices.

Christine Pashley | EurekAlert!
Further information:
http://www.ohsu.edu/news/110402scriptImages.html.
http://www.ohsu.edu/

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>