Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

People near freeways are exposed to 30 times the concentration of dangerous particles

18.10.2002


People who live, work or travel within 165 feet downwind of a major freeway or busy intersection are exposed to potentially hazardous particle concentrations up to 30 times greater than normal background concentrations found at a greater distance, according to two recently published UCLA studies.



The studies -- published in the Journal of the Air and Waste Management Association and in Atmospheric Environment -- show that proximity to a major freeway or highway dramatically increases exposure to "ultrafine" particles (tiny particles less than 0.1 micrometers in diameter), which are linked to neurological changes, mild pulmonary inflammation and cardiovascular problems. The U.S. Environmental Protection Agency (EPA) currently regulates particles less than 2.5 micrometers in diameter, and ultrafines represent the very smallest particles inhaled by the public.

Traffic-related air pollution is of great concern to Los Angeles, which has the most severe particle air-quality problem in the United States. The Los Angeles Basin is home to more than 15 million residents and 10 million vehicles contributing to its daily traffic. Motor vehicle emissions represent the most significant source of ultrafine particles. Moreover, recent toxicological studies have shown that ultrafine particles are more toxic than larger particles, potentially leading to increased mortality and illness with increased exposure to particulate matter.


"We believe this is the first study conducted in the United States that provides a detailed spatial profile of ultrafine particles near freeways," said William C. Hinds, a professor of environmental health sciences in the UCLA School of Public Health, who co-authored the studies with Yifang Zhu, a doctoral candidate in the School of Public Health.

The studies, conducted through the Southern California Particle Center and Supersite (SCPCS), assessed the size-distribution and concentration of the tiny ultrafine particles near major freeways. The first study focused on Interstate 405, one of the nation’s busiest freeways, with 93 percent of the traffic composed of gasoline-powered cars. The second study looked at the 710 freeway, which has more than 25 percent of its traffic derived from heavy-duty diesel trucks.

By measuring the number of particles and their size at varying distances from the 405 and 710, Hinds and Zhu concluded that the number of ultrafine particles downwind near both freeways was approximately 25 to 30 times greater than the number upwind. The drop in the number of ultrafine particles occurred rapidly with increasing distance from the freeway, falling to 30 percent of peak concentration at 330 feet. The rapid decrease and dilution in particle concentration was due to several factors, including atmospheric dispersion, coagulation, and wind direction and speed.

Both Hinds and Zhu concur that better understanding of the size and concentration of ultrafine particles is vital, particularly in a city with 85 million vehicle-miles traveled on its freeways on an average day.

"The objectives of the study include providing scientists with a way to predict exposure concentrations to ultrafine particles near freeways in order to facilitate health studies and provide data for the development of an air-quality standard for ultrafine particles," Zhu said.

The studies also examined the concentrations of carbon monoxide (CO), black carbon (BC) and particle mass. Both CO and BC concentrations are closely related to vehicle emissions. Like ultrafines, CO and BC concentrations decreased significantly (70 percent to 80 percent) within the first 330 feet downwind of the freeway. This confirms the notion that vehicular exhaust is a major source of these pollutants near a major roadway.

The SCPCS -- housed in the School of Public Health and the Institute of the Environment at UCLA, and funded by the EPA’s Science To Achieve Results (STAR) program and California Air Resources Board -- brings together outstanding scientists from leading universities throughout the nation to create dynamic new ways of investigating the health effects of particulate matter and to secure the protection of public health by better informing policy.

Wendy Hunter | EurekAlert!
Further information:
http://www.scpcs.ucla.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>