Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

People near freeways are exposed to 30 times the concentration of dangerous particles

18.10.2002


People who live, work or travel within 165 feet downwind of a major freeway or busy intersection are exposed to potentially hazardous particle concentrations up to 30 times greater than normal background concentrations found at a greater distance, according to two recently published UCLA studies.



The studies -- published in the Journal of the Air and Waste Management Association and in Atmospheric Environment -- show that proximity to a major freeway or highway dramatically increases exposure to "ultrafine" particles (tiny particles less than 0.1 micrometers in diameter), which are linked to neurological changes, mild pulmonary inflammation and cardiovascular problems. The U.S. Environmental Protection Agency (EPA) currently regulates particles less than 2.5 micrometers in diameter, and ultrafines represent the very smallest particles inhaled by the public.

Traffic-related air pollution is of great concern to Los Angeles, which has the most severe particle air-quality problem in the United States. The Los Angeles Basin is home to more than 15 million residents and 10 million vehicles contributing to its daily traffic. Motor vehicle emissions represent the most significant source of ultrafine particles. Moreover, recent toxicological studies have shown that ultrafine particles are more toxic than larger particles, potentially leading to increased mortality and illness with increased exposure to particulate matter.


"We believe this is the first study conducted in the United States that provides a detailed spatial profile of ultrafine particles near freeways," said William C. Hinds, a professor of environmental health sciences in the UCLA School of Public Health, who co-authored the studies with Yifang Zhu, a doctoral candidate in the School of Public Health.

The studies, conducted through the Southern California Particle Center and Supersite (SCPCS), assessed the size-distribution and concentration of the tiny ultrafine particles near major freeways. The first study focused on Interstate 405, one of the nation’s busiest freeways, with 93 percent of the traffic composed of gasoline-powered cars. The second study looked at the 710 freeway, which has more than 25 percent of its traffic derived from heavy-duty diesel trucks.

By measuring the number of particles and their size at varying distances from the 405 and 710, Hinds and Zhu concluded that the number of ultrafine particles downwind near both freeways was approximately 25 to 30 times greater than the number upwind. The drop in the number of ultrafine particles occurred rapidly with increasing distance from the freeway, falling to 30 percent of peak concentration at 330 feet. The rapid decrease and dilution in particle concentration was due to several factors, including atmospheric dispersion, coagulation, and wind direction and speed.

Both Hinds and Zhu concur that better understanding of the size and concentration of ultrafine particles is vital, particularly in a city with 85 million vehicle-miles traveled on its freeways on an average day.

"The objectives of the study include providing scientists with a way to predict exposure concentrations to ultrafine particles near freeways in order to facilitate health studies and provide data for the development of an air-quality standard for ultrafine particles," Zhu said.

The studies also examined the concentrations of carbon monoxide (CO), black carbon (BC) and particle mass. Both CO and BC concentrations are closely related to vehicle emissions. Like ultrafines, CO and BC concentrations decreased significantly (70 percent to 80 percent) within the first 330 feet downwind of the freeway. This confirms the notion that vehicular exhaust is a major source of these pollutants near a major roadway.

The SCPCS -- housed in the School of Public Health and the Institute of the Environment at UCLA, and funded by the EPA’s Science To Achieve Results (STAR) program and California Air Resources Board -- brings together outstanding scientists from leading universities throughout the nation to create dynamic new ways of investigating the health effects of particulate matter and to secure the protection of public health by better informing policy.

Wendy Hunter | EurekAlert!
Further information:
http://www.scpcs.ucla.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>