Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tomorrow’s super robots may owe their mobility to a cockroach’s legs today

27.08.2002


The marriage of machine and biology requires adopting the pliability and strength from the legs of this despised insect



The cockroach is an insect despised for its ubiquitousness, among other reasons. Yet, it may hold a key to the next evolutionary step in the "life" of robots.
Background

For years, serious futurists could only imagine that robots, such as the television model, would always be stiff, clumsy, and prone to breakdown. This was before the advent of "Biomimetics," a research aimed at developing a new class of biologically inspired robots that exhibit much greater robustness in performance in unstructured environments than today’s robots.



This new class of robots will be substantially more compliant and stable than current robots, and will take advantage of new developments in materials, fabrication technologies, sensors and actuators. Materials found in nature differ significantly from those found in human-made devices. Nature appears to design for "bending without breaking" and employs tissues that are compliant and viscoelastic rather than stiff, homogeneous, and isotropic. In addition, local variations in biological materials, tailored to meet local variations in loading, are common. The nonlinear, compliant, and inhomogeneous materials found in even the simplest animals provide them with a sophistication and robustness that today’s robots cannot match. And it is hard to find an animal as simple as the cockroach.

Actually, the deathhead cockroach possesses legs with compliant muscles and skeletal components that increase dynamic stability and disturbance rejection. As the ability to analyze and fabricate mechanisms with compliant and functionally-graded materials improves, the opportunity exists to develop robots whose structures draw inspiration from simple animals such as insects and crustaceans. One fertile area for biomimetic design is the leg of walking or hopping robots, where leg compliance is especially important.

One method for manufacturing such robots is Shape Deposition Manufacturing (SDM), a rapid prototyping technology. SDM addresses many limitations of traditional manufacturing and assembly by enabling the in situ fabrication of mechanisms with complex geometry and heterogeneous materials. Design and fabrication of layered and heterogeneous materials (also called Functionally Graded Materials - FGMs) has recently been a focus of research. FGMs enable control of local variations of biomimetic components by selectively depositing soft and hard materials. To produce biologically inspired components of biomimetic/mechanical properties, a bridge between biological findings and SDM design specifications was required.

The first demand for SDM is to characterize biological structures and translate the characteristics into quantitative specifications for mobile robots. The second requirement is to model SDM material behavior to facilitate component design to meet these specifications. To address these requirements experiments were conducted on a hind leg of Blaberus discoidalis and described its response to both step displacement inputs and sinusoidal displacement excitations. Next, a test was carried out on one of the materials used in SDM, a soft polyurethane polymer largely used as joint material in manufacture, and fit the results to standard viscoelastic (pliable yet sturdy) materials and models. Comparison and understanding of the mapping between these two studies enable us to begin to design and manufacture legs similar to those found in biology.

The Study

The authors of "Material Modeling for Shape Deposition Manufacturing of Biomimetic Components," are Xiaorong Xu, Wendy Cheng, Mark R. Cutkosky and Motohide Hatanaka from Stanford University, and Daniel Dudek and Robert J. Full at the University of California at Berkley, Department of Integrative Biology, Berkeley, CA. The authors are presenting their work at "The Power of Comparative Physiology: Evolution, Integration and Application" meeting, sponsored by the American Physiological Society (APS) August 24-28, 2002 at the Town & Country Hotel, San Diego, CA. To learn more about the conference and presentations, go to: http://www.the-aps.org/meetings/aps/san_diego/home.htm

Methodology

Relaxation and dynamic experiments were carried out on the hind leg of Blaberus discoidalis to aid in the selection of a material behavior model and to quantify measures of roach leg response. During testing, the coxa of the ablated metathoracic limb (hind limb) of the cockroach was epoxied to 3/8" acrylic such that the coxa-femur and femur-tibia joints were free to rotate. Cyanoacrylate was used to attach one end of a stainless steel pin to the distal tip of the tibia; dental impression compound was used to adhere the other end of the pin to the arm of a servo-motor system. The leg was then displaced with the Aurora system, which is based upon a high performance rotary moving coil motor supported by precision ball bearings. The results are that the total error in the force-displacement measurements to be less than four percent that of a viscoelastic solid.

Results

The results indicate that a cockroach leg excited in a direction orthogonal to the joint direction behaves similarly to a viscoelastic material. The exponential nature of the force relaxation curves suggests viscoelasticity. The hysteretic nature of the force-displacement curves indicates that there is energy loss due to the internal friction, which is a common characteristic for viscoelastic materials. The cockroach leg is subject to a combination of bending and torsion in the experiment. The overall effect can be modeled as a torsion spring with a moment arm. Additional assumptions for the model include: (1) the axis of rotation for the leg is constant during torsion and (2) the joint material can be approximated using a lumped-parameter element with uniformly distributed linear viscoelastic properties.

The SDM process allowed an integration of a range of desired impedance into the structure of robot legs for improved robustness and simpler control. SDM-compatible materials span a wide range of material properties and the SDM process enables researchers to control local variations through Functionally Graded Materials (FGM). With information regarding the mechanical behavior of animal legs and the material characteristics of SDM materials, the researchers developed guidelines for biomimetic leg design.

Conclusions

Some polymer materials that can be used in SDM are similar to the biological materials found in insect legs that exhibit viscoelasticity. This inspires us to develop material models and design methodologies that can be used to guide biomimetic robot leg design and material selection. In this paper, we have discussed a simple linear, lumped parameter model used to characterize cockroach leg behavior in relaxation experiments and in response to sinusoidal excitations. We have also developed a dynamic test machine and begun characterizing a polyurethane material used for SDM fabrication of robot joints.

The current models of leg response assume linear viscoelasticity. The correlation between these models and the results of the experiments is relatively good at low frequencies and small displacements, but deteriorates at higher frequencies and displacements as nonlinear effects grow pronounced.

In addition, at very low frequencies, dynamic tests on cockroach legs indicate a higher loss modulus than that predicted by a standard linear model. Should these nonlinear aspects of leg behavior prove important for locomotion, the researchers believed that better models had to be developed better models to simulate the viscoelastic behavior of the leg in a wide frequency range.

Additionally, to produce legs with mechanical response similar to that of the real cockroach leg, enhanced characterization of additional SDM materials is required. Knowledge of SDM material behavior, along with information about the aspects of leg behavior important to locomotion, will enable the issuance of general design guidelines for designing biomimetic legs.

(It is worth noting that these legs have been used to produce a remarkable successful robot from Stanford named SPRAWL. SPRAWL can negotiate rough terrain without a brain or any reflexes because the control is built into the smart or tuned legs described above.)

Donna Krupa | EurekAlert!

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>