Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liver damage in Hepatitis C patients could be treated with warfarin

31.07.2008
The drug warfarin may help prevent liver failure in thousands of people with Hepatitis C, according to new research.

In a study published tomorrow (1 August) in the Journal of Thrombosis and Haemostasis, researchers show that warfarin reduces the scarring on the liver caused by Hepatitis C. This scarring, or fibrosis, replaces normal liver cells and can lead to cirrhosis of the liver and ultimately liver failure.

Following the new findings in mouse models, the Imperial College London researchers are now embarking on a clinical trial of warfarin as a treatment for people with Hepatitis C, funded by the Medical Research Council (MRC).

There are an estimated 300,000 people in the UK with chronic Hepatitis C. The disease progresses much more quickly in some patients than in others and around one in five of those infected will develop cirrhosis.

Treatment to clear the infection is currently effective in only around 50 percent of patients and can have considerable unpleasant side effects such as fatigue, nausea and depression. If this treatment fails, there are no currently effective therapies to slow the progression of fibrosis.

The new research looks at how warfarin affects the progression of fibrosis in mice with chronic liver injury. Warfarin is already used to prevent and treat blood clots in people with artificial heart valves, deep vein thrombosis, and a host of other conditions.

A previous study by the same researchers demonstrated that in Hepatitis C, scarring of the liver accelerates in those patients who are prone to form blood clots. This led the researchers to believe that warfarin’s anti-clotting properties might enable the drug to fight the disease.

The new study showed that treatment with warfarin significantly reduces the progression of fibrosis in normal mice with chronic liver injury. It also shows that warfarin reduces the progression of fibrosis in mice with chronic liver injury and a genetic mutation known as Factor V Leiden (FVL), which causes fibrosis to progress at a much faster rate than usual because it amplifies the body’s clotting mechanisms.

Professor Mark Thursz, one of the authors of the study from the Division of Medicine at Imperial College London, said: “At the moment there are a great many people with Hepatitis C who have no treatment options left and it would transform their lives if we could prevent them from developing liver failure. We are looking forward to seeing the results of our upcoming trial in humans now that we’ve had such promising results in the trial in mice.”

Dr Quentin Anstee, an MRC Clinical Research Fellow and the corresponding author of the study from Imperial College London, added: “If we have positive results from the new trial, we will have a potential treatment that is already available and very cheap, and which should be safe enough for people to take. If we are successful in Hepatitis C patients, we are hopeful that such treatment might benefit people with liver damage from other causes, and this is something we would be keen to study further.”

The researchers are recruiting 90 patients for the new trial who have undergone a liver transplant as a result of liver failure caused by hepatitis C. A third of such patients progress very rapidly to fibrosis following transplantation.

The researchers hope that treating these patients with warfarin will prevent this liver damage and improve their prognosis. Transplant patients have a liver biopsy every year following transplantation to assess their progress, and the researchers will analyse data from this biopsy to establish the effectiveness of the warfarin treatment. The two-year trial will take place across five centres including Imperial College Healthcare NHS Trust, which has integrated with Imperial College London to form the UK’s first Academic Health Science Centre.

The trial is taking place in transplant patients because the researchers estimate that it would take 10-15 years to conduct a trial in patients in whom the disease was progressing at a normal rate.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>