Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The drugs blocked an enzyme and opened blood vessels to tumors but not normal brain

28.07.2008
Drugs Commonly used for erectile dysfunction allowed more Chemotherapy to reach brain tumors in laboratory animal study

In a study using laboratory animals, researchers found that medications commonly prescribed for erectile dysfunction opened a mechanism called the blood-brain tumor barrier and increased delivery of cancer-fighting drugs to malignant brain tumors.

The experiments were conducted at Cedars-Sinai Medical Center’s Maxine Dunitz Neurosurgical Institute and published in Brain Research.

Viagra (sildenafil) and Levitra (vardenafil) are known as PDE5 inhibitors because they block an enzyme, phosphodiesterase5, which interrupts a series of biochemical events that cause the decreased blood flow of erectile dysfunction. This laboratory rat study, published online ahead of print in the journal, found that similar biochemical interactions in the small vessels of the brain play a major role in the blood-brain tumor barrier, which impedes delivery of anti-tumor drugs into brain tumors. PDE5 inhibitors were found to open the barrier and increase drug transport in this early animal study.

Although the normal blood-brain barrier, which regulates access to the brain from the bloodstream, shares many characteristics with the blood-brain tumor barrier, the signaling mechanism blocked by PDE5 inhibitors is unique to the blood-brain tumor barrier. This allows the PDE5 inhibitors to selectively increase drug transport to malignant brain tumors without affecting normal brain tissue.

According to the researchers, these findings may have significant implications in improving drug delivery to brain tumors in patients.

“This is the first study to show that oral administration of PDE5 inhibitors increases the rate of transport of compounds across the blood-brain tumor barrier and improves the effectiveness of the anti-tumor drug adriamycin in the treatment of brain tumors in a rat model. We chose adriamycin for this study because it is one of the most effective drugs against brain tumor cell lines in the laboratory but it has very little effect in animals and humans because it is unable to cross the blood-brain tumor barrier. The combination of vardenafil and adriamycin resulted in longer survival and smaller tumor size,” said neurosurgeon Keith L. Black, M.D., chairman of the Department of Neurosurgery at Cedars-Sinai Medical Center and director of the Maxine Dunitz Neurosurgical Institute.

Black, the article’s first and corresponding author, has been recognized for his earlier groundbreaking work to break through the blood-brain tumor barrier with natural and synthetic bradykinin, a peptide that temporarily opens the barrier and increases anti-cancer drug delivery into certain tumors by more than 1,000 percent. In 2000, he received the Javits Neuroscience Investigator Award from the National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health, for his blood-brain barrier research.

In the current studies, the blood-brain tumor barrier-opening effects of PDE5 lasted considerably longer than those of bradykinin and allowed greater transport across the barrier into tumor tissues. Because vardenafil was found to be more effective than sildenafil in increasing blood-brain tumor barrier permeability and transport, vardenafil was used in a survival study of 29 tumor-bearing rats. Those treated with saline (control) survived 32 days on average while those treated with vardenafil alone survived about 35 days and those treated with adriamycin alone survived about 42 days. When vardenafil was combined with adriamycin, rats survived an average 53 days.

Although the researchers exposed the laboratory animals to doses of sildenafil and vardenafil that are comparable to the dose range approved for erectile dysfunction in humans, there were no detectable side effects in the rats, and neither drug increased transport of tracers into normal brain tissue.

Funding for the studies was provided by the National Institute of Neurological Disorders and Stroke (the Javits Award), the Maxine Dunitz Neurosurgical Institute and the Ruth and Lawrence Harvey Chair in Neuroscience, held by Black.

Sandy Van | prpacific
Further information:
http://www.csmc.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>