Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Approach Sheds Light on Ways Circadian Disruption Affects Human Health

17.07.2008
A study by researchers in Rensselaer Polytechnic Institute’s Lighting Research Center (LRC) provides a new framework for studying the effects of circadian disruption on breast cancer, obesity, sleep disorders, and other health problems.

Growing evidence indicates that exposure to irregular patterns of light and darkness can cause the human circadian system to fall out of synchrony with the 24-hour solar day, negatively affecting human health — but scientists have been unable to effectively study the relationship between circadian disruptions and human maladies.

A study by researchers in Rensselaer Polytechnic Institute’s Lighting Research Center (LRC) provides a new framework for studying the effects of circadian disruption on breast cancer, obesity, sleep disorders, and other health problems.

Light and dark patterns are the major synchronizer of circadian rhythms — the biological cycles that repeat approximately every 24 hours — to the solar day. Inadequate or irregular light exposure can cause circadian rhythm disruptions that are believed to manifest into a variety of health ailments. However, ecological studies to measure human light exposure are virtually nonexistent, making it difficult to determine if, in fact, light-induced circadian disruption directly affects human health.

LRC researchers have created a small, head-mounted device to measure an individual’s daily rest and activity patterns, as well as exposure to circadian light — short-wavelength light, particularly natural light from the blue sky, that stimulates the circadian system. The device, called the Daysimeter, was sent to 43 female nurses across the country to measure their daily exposure to circadian light, according to Mark Rea, director of the LRC and principal investigator on the project.

The Daysimeter was worn for seven days by both day-shift and rotating shift nurses and then returned to the LRC for analysis. Simultaneously, Rea and his colleagues studied the effect of irregular light exposure to the circadian system of 40 rats, in order to determine if the relationship between circadian disruption and health outcomes could be uncovered using rodent models.

Twenty rats were exposed to a consistently repeating pattern of 12 hours of light followed by 12 hours of dark, to mimic the light exposure experienced by day-shift workers. The remaining rodents were exposed to irregular 12-hour patterns of light and darkness.

For the nurses, circadian entrainment and disruption was measured by comparing exposure light and darkness with each individual’s rest and activity patterns. Wheel running was used to measure rat rest and activity patterns.

A quantitative measure of circadian behavioral entrainment or disruption for day-shift and rotating shift workers was developed based on the circular cross-correlations of activity and light exposure data from both the nurses and the rats. An analysis technique commonly utilized in the field of signal processing, circular

cross-correlation involves the concept of time-shifting one signal relative to another to determine relationships between signals that might otherwise be obscured due to timing differences.

“We found that the circadian entrainment and disruption patterns for day-shift and rotating shift nurses were remarkably different from each other, but remarkably similar to the patterns for the two parallel groups of nocturnal rodents,” says Rea.

“The marked differences within species, together with the marked similarities across species, in addition to the new method of quantifying circadian entrainment or disruption suggests that health-related problems associated with circadian disruption in humans can be parametrically studied using animal models.”

“This ability to quantitatively define circadian light and dark for humans and for animals will allow a new class of meaningful studies of light as a stimulus for circadian entrainment or disruption to be undertaken, not only in humans, but in nocturnal rodents as well – which, until now, has been impossible,” says Rea. “Additionally, studies of circadian disruption employing animal models for human disease can now be designed and conducted to more accurately reflect their relevance to the actual living conditions in humans.”

Rea carried out his research with LRC researchers Andrew Bierman, Mariana Figueiro, and John Bullough, who are co-authors on the paper. The study is published online in the Journal of Circadian Rhythms and can be viewed in its entirety at: http://www.jcircadianrhythms.com/content/6/1/7.

This project was funded by a grant from the National Institutes of Health’s Genes, Environment, and Health Initiative.

About the Lighting Research Center
The Lighting Research Center (LRC) is part of Rensselaer Polytechnic Institute of Troy, N.Y., and is the leading university-based research center devoted to lighting. The LRC offers the world’s premier graduate education in lighting, including one- and two-year master’s programs and a Ph.D. program. Since 1988 the LRC has built an international reputation as a reliable source for objective information about lighting technologies, applications, and products. The LRC also provides training programs for government agencies, utilities, contractors, lighting designers, and other lighting professionals. Visit http://www.lrc.rpi.edu.
About Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The university offers bachelor’s, master’s, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Amber Cleveland | Newswise Science News
Further information:
http://www.lrc.rpi.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>