Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Y Chromosome Study sheds light on Athapaskan Migration to Southwest U.S.

16.07.2008
A large-scale genetic study of native North Americans offers new insights into the migration of a small group of Athapaskan natives from their subarctic home in northwest North America to the southwestern United States. The migration, which left no known archaeological trace, is believed to have occurred about 500 years ago.

The study, led by researchers at the University of Illinois, is detailed this month in the American Journal of Physical Anthropology. It relied on a genetic analysis of the Y chromosome and so offers a window on the unique ancestral history of the male Athapaskan migrants. Previous genetic studies of this group focused on mitochondrial DNA, which is passed down exclusively from mothers to their offspring.

The new findings reinforce the hypothesis that the Athapaskan migration involved a relatively small group that nonetheless was very successful at assimilating and intermixing with native groups already living in the southwest. The newcomers were so influential that the Athapaskan language family now dominates many parts of the Southwest. Now called Apacheans, the Navajo and Apache descendants of the early migrants are dispersed throughout the central Southwest and speak languages closely related to the Chipewyan, an Athapaskan language found in the subarctic.

(Language studies also revealed that Athapaskans migrated to the northwest U.S. and settled on the coast in parts of California and Oregon.)

How the Athapaskan migrants were able to spread their language – and genes – so successfully is unknown. Anthropologists note that the migrants probably arrived in the Southwest at a time of stress among indigenous groups as a result of an extended drought.

The new study also revealed how pervasively European males intermixed with native groups, said principal investigator Ripan Malhi, a molecular anthropologist in the department of anthropology at Illinois.

“A lot of the Y chromosomes have been replaced by European males,” he said.

Malhi and his colleagues looked at specific regions on the Y chromosome that can vary from person to person. Tiny differences in the sequence of nucleotides that spell out the genetic code can be used to determine whether – and how closely – individuals are related to one another. Those who share many of these genetic signatures are more likely to share a recent common ancestor than those who don’t.

The researchers analyzed 724 Y chromosomes from 26 native populations in North America. By including groups from across the continent (they studied tribes from Alaska to the Yucatan Peninsula and eastward to Hudson Bay and southeast U.S.), the researchers were able to analyze genetic differences among many native groups and to get an idea of the degree of European male infiltration into the native gene pool.

Consistent with a previous study of native North American mitochondrial DNA (also led by Malhi), the new analysis found a pattern that indicates that a small group of subarctic Athapaskans migrated to the Southwest. This pattern is reflected in the fact that many Apacheans carry the genetic signature of a small subset of subarctic Athapaskans.

These findings also affirm an earlier study of variants of a particular protein, albumin, in different native groups. That study showed that while many Apacheans carried an albumin variant common among natives in the Southwest and Mesoamerica, some Apacheans were the only ones to carry a variant that also occurs in subarctic populations.

Other patterns emerged from the Y chromosome analysis. One genetic signature associated with European males was detected in native males throughout North America, but was found at the highest frequency in groups living nearest to Hudson Bay, where trade between Europeans and the region’s indigenous peoples was established in the early 17th century.

The new study, along with the earlier genetic and protein studies and the language analyses, is filling a gap in the archaeological record of Athapaskan migration, Malhi said.

This gap is the result of the fact that the Athapaskan migrants seem not to have altered the physical landscape, architecture or cultural practices of the populations they assimilated in the southwest U.S.

The only lasting evidence of the Athapaskan migration found so far is in their language and their genes, Malhi said.

“We’re fitting together different lines of evidence,” he said. “We’re not just using the genetic data. We’re using it in combination with the linguistic, oral histories from elders in the community and archaeological data. And even though there has been over a century of archaeological research done in the Southwest, there’s not much information there about the Athapaskan migration into the Southwest.”

The team also included researchers from the Universidad Nacional Autonoma de Mexico, the University of California at Davis, Washington State University, the University of Montana, the University of Arizona and Trace Genetics.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu
http://www.news.uiuc.edu/news/08/0715athapaskans.html

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>