Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Reveals Principles of Gold Nanocluster Stability

14.07.2008
A report published in the July 8 issue of the journal Proceedings of the National Academy of Sciences (PNAS) is the first to describe the principles behind the stability and electronic properties of tiny nanoclusters of metallic gold. The study, which confirms the “divide and protect” bonding structure, resulted from the work of researchers at four universities on two continents.

“While gold nanoparticles are being used by so many researchers – chemists, materials scientists and biomedical engineers – no one understood their molecular and electronic structures until now,” said Robert Whetten, a professor in the Georgia Institute of Technology’s School of Physics and School of Chemistry and Biochemistry. “This research opens a new window for nanoparticle chemistry.”

Gold and sulfur atoms tend to aggregate in specific numbers and highly symmetrical geometries. Sometimes these clusters are called “superatoms” because they can mimic the chemistry of single atoms of a completely different element.

Researchers commonly use gold nanoparticles because they are stable and exhibit distinct optical, electronic, electrochemical and bio-labeling properties. However, understanding the physicochemical properties of such clusters is a challenge, according to Whetten, because that requires knowledge of their atomic structures.

A significant advance came in late 2007 though, when Stanford University researchers reported the first-ever total structure determination of a 102-atom gold cluster. The X-ray structure study revealed that pairs of organic sulfur (“thiolate”) groups extracted gold atoms from the gold layer to form a linear thiolate-gold-thiolate bridge while interacting weakly with the metal surface below. These gold–thiolate complexes formed a sort of protective crust around the nanoparticles.

“This discovery contradicted what most chemists believed was going on – which was that the sulfur atom merely sat atop the uppermost gold layer, bound to three adjacent metal atoms,” said Whetten.

With the experimentally determined structural coordinates, an international team of researchers from Georgia Tech, Stanford University, the University of Jyväskylä in Finland and Chalmers University of Technology in Sweden set out to determine the electronic principles underlying the 102-atom gold compound and others like it. The team conducted large-scale electronic structure calculations in supercomputing centers in Espoo, Finland; Stockholm, Sweden; and Juelich, Germany.

The researchers found that the 102-atom gold cluster was a “superatom” with a core of 79 gold atoms arranged into a truncated decahedron: two pyramids with pentagonal bases joined together into a faceted shape, but with the pyramids’ tips chopped off. Around the core, 23 gold atoms formed an unusual pattern, joining the thiolates in shapes that resemble handles.

The results confirmed the “divide and protect” structure first predicted by team member Hannu Häkkinen, a professor at the University of Jyväskylä and former senior research scientist at Georgia Tech in the laboratory of Uzi Landman. Häkkinen and Henrik Grönbeck of the Chalmers University of Technology previously proposed that a cluster of 38-atom gold contained a central metallic core of 14 gold atoms and a protective layer of 24 gold atoms bound to sulfur.

“In 2006, we predicted that gold atoms in this bonding motif were divided in two groups – those that made the metal core and those that helped to protected it,” explained Häkkinen. “Now there was evidence that this was true.”

In the study reported in PNAS, the researchers found that the clusters were stable because the surface gold atoms in the core each had at least one surface-chemical bond and the gold core exhibited a strong electron shell closing.

With the 102-atom gold cluster, each gold atom in the cluster donated one valence electron. Forty-four of those electrons were immobilized in bonds between gold atoms and thiolates, leaving 58 electrons to fill a shell around the “superatom.” In this configuration, the cluster wouldn’t benefit from adding or shedding electrons, which would destabilize its structure. This process is similar to what happens in noble gases, which are chemically inert because they have just the right number of electrons to fill a shell around each atom’s nucleus.

Associated with the filled electron shell, the gold-thiolate compound also had a major energy gap to unoccupied states. The calculated energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital states for the 102-atom compound was significant – 0.5 electron volts. Metals typically have a gap of zero, so this gap indicates an atypical electronic stability of the compound, explained Whetten.

Besides the 102-atom compound, the researchers also determined the electronic structures for 11-, 13- and 39-atom gold cluster compounds. They found that the 11- and 13-gold atom clusters form closed electronic shells with 8 electrons and the 39-atom gold clusters with 34.

“The theoretical concepts published in this paper provide a solid background for further understanding of the distinct electrical, optical and chemical properties of the stable mono-layer-protected gold nanoclusters,” said Whetten, whose funding for this research came from the National Science Foundation and the U.S. Department of Energy. Former Georgia Tech graduate student Ryan Price and current graduate student James Bradshaw also contributed to this work.

The study also shows that experimentally well-characterized, structure-resolved, thermodynamically stable species of thiolate-, phosphine-halide-, and phosphine-thiolate-protected gold nanoparticles share common factors underlying their stability.

Once this initial work was completed, the researchers started predicting the structures of other stable gold cluster compositions that are still awaiting a precise structure determination.

In the March 26 issue of the Journal of the American Chemical Society, the research team predicted the structure for a cluster containing 25 gold atoms. They determined that the structure was comprised of an icosahedron-like 13-atom gold core protected by six “V-shaped” long units, creating a “divide and protect” composition. The structural prediction was recently confirmed by another group’s experimental work.

“We now have a unified model that provides a solid background for nanoengineering ligand-protected gold clusters for applications in catalysis, sensing, photonics, bio-labeling and molecular electronics,” said Häkkinen.

Additional authors on the PNAS paper included Michael Walter, Jaakko Akola and Olga Lopez-Acevedo of the University of Jyväskylä; and Pablo Jadzinsky, Guillermo Calero and Christopher Ackerson of Stanford University.

Abby Vogel | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>