Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals that the brain hides information from us to prevent mistakes

11.07.2008
When we notice a mosquito alight on our forearm, we direct our gaze in order to find its exact position and quickly try to swat it or brush it away to prevent it bite us. This apparently simple, instantaneous reaction is the result of a mental process that is much more complex than it may seem.

It requires the brain to align the tactile sensation on the skin with spatial information about our surroundings and our posture. For the first time, a study done by the Cognitive Neuroscience Research Group (GRNC), attached to the Barcelona Science Park, has shown how this process unfolds over time, examining the conflicts posed by the coexistence of differing spatial maps in the brain.

GRNC researchers Salvador Soto-Faraco (ICREA research professor) and Elena Azañón conducted the study forthcoming in the 22 July issue of the journal Current Biology, available online on 10th July (doi:10.1016/j.cub.2008.06.045).

“The main finding of the study is that it has enabled us to confirm that tactile sensations are initially located unconsciously in anatomical coordinates, but they reach our awareness only when the brain has formed an image of their origin in the spatial coordinates, external to the body,” explained Salvador Soto-Faraco. The coexistence of different spatial reference frames in the brain has been known for some time. So has the fact that confusions between them may result in some cases, such as when we invert the usual anatomical position of some body parts (e.g. when crossing our arms over the body midline). “The brain sorts out problems of this kind rapidly, in a matter of tenths of a second. To do so, however, it has to integrate information arriving in formats that are quite disparate”, Sotoa-Faraco added. “Our research has helped us understand how this process works and how the brain manages spatial realignment when faced with conflict”, he concluded.

A simple example serves to illustrate the confusion that can occur when different spatial reference frames are set in conflict: cross one of your arms over the other, then interleave the fingers of both hands together, palms touching, and turn your hands towards your body so that the left hand is on the right side and vice versa. While holding this position, if you receive an instruction but no direct physical contact that you are to move one of your fingers, you will most likely move the equivalent finger of the opposite hand.

In order to determine how long it takes for the brain to realign these conflicting spatial reference frames, the GRNC researchers devised a specific methodology that enabled indirect measurement of the location of a tactile sensation on the skin. To do this, they measured response times to a brief flash (produced with an LED light emitting diode) appearing near one of the observer’s hands. The researchers then compared the reaction times to the flash when it had appeared near a hand that had previously received a tactile stimulus, versus when the flash had appeared near the opposite hand. In the main study, the participants (a group of 32 university students) were asked to cross their arms so that their right hand lay in their left-hand visual field and vice versa. The purpose of this procedure was to ensure that the actual external position of the hands was in conflict with their anatomical location.

Each participant underwent roughly 600 essays of this sort. The time between the tactile sensation and the appearance of the target visual stimulus, as well as their realtive locations, were varied at random. It was observed that the participants’ responses to the flash changed dramatically as a function of the time elapsed between receiving the tactile sensation and the presentation of the visual stimulus. In the initial phase (60 ms or earlier), the brain tended to locate the tactile sensation in anatomical terms, i.e. if it received the sensation on the left hand, even though it was crossed over to the right- visual field, the sensation was processed as though it had happened on the left-hand side of the body. However, only a few tenths of a second later (roughly 200 ms), compensation occurred and the tactile sensation was determined to arise from the right-hand side. Curiously, when participants in the study were asked to locate the tactile stimulus explicitly, they always referred their response to its external source. This reveals that, although a transition occurs from an initial anatomically-based reference frame towards a visually or externally-based reference frame, we apparently become aware of the tactile sensation in the latter phase.

“The study’s results have allowed us to deepen our understanding of how tactile information is located, suggesting that our brain avoids confusions among the various spatial reference frames by keeping the initial part of the process below the threshold of awareness”, explained Soto-Faraco. “Put simply, it could be said that this system of spatial transformation works much as when we hastily jot down some rough notes and later copy them out into final form, discard the original draft,” he concluded.

Reference:
Elena Azañón and Salvador Soto-Faraco, “Changing Reference Frames during the Encoding of Tactile Events”, Current Biology (2008), doi:10.1016/j.cub.2008.06.045

Carme Pérez | alfa
Further information:
http://www.pcb.ub.es

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>