Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could Climate Change Impact Costa Rica? New Study Says Yes

11.07.2008
While melting Arctic sea ice and glaciers have become a symbol of climate change, new research from the University of Massachusetts Amherst indicates that highland forests in Costa Rica could also be seriously affected by future changes in climate, reducing the number of species in a region famous for its biodiversity.

“Central America is a major, emerging “hot spot” in the tropics where climate change impacts on the environment will be pronounced, and the loss of species associated with climate has already been identified,” says doctoral candidate Ambarish Karmalkar of the UMass Amherst Climate System Research Center.

He recently attended the first conference organized in Costa Rica to study this issue. “We have completed a regional climate model showing that many areas of Costa Rica will become warmer and drier as climate change accelerates, and these changes will be amplified at higher elevations.”

Additional members of the research team include Raymond Bradley, a professor of geosciences at UMass Amherst, and Henry Diaz of the National Oceanic and Atmospheric Administration.

According to Karmalkar, Costa Rica has a unique geography that supports a stunning array of plants, animals and insects. The land begins at sea level on both the western Pacific coast and the eastern Caribbean coast, rising to over 3,000 meters above sea level in the central mountain range. As the land rises, differences in temperature and precipitation caused by elevation create an array of distinct ecosystems stacked on top of each other, each one housing a unique biological community.

Above 1,000 meters, rising air creates a continual cloud layer that constantly bathes the vegetation in horizontal precipitation, allowing plants and animals to survive the dry season from December to April. These cloud forests are essential to maintaining freshwater resources in Costa Rica, and the height at which the clouds develop is a critical factor for these ecosystems. Since they are highly dependant on temperature and precipitation, these ecosystems are particularly vulnerable to climate change.

To predict the effects of climate change, a regional modeling system capable of accommodating the complex topography of Central America was chosen. After validating the computer model using rainfall and temperature data collected in Central America between 1961 and 1990, the team looked at what would happen if carbon dioxide in the atmosphere doubled. The results of this medium-to-high scenario, called the A2 scenario in reports issued by the Intergovernmental Panel on Climate Change, were striking.

“If carbon dioxide levels double, this region will not only experience an increase in temperature of more than three Kelvins, but all future temperatures will likely be higher than the complete range of present-day temperatures,” says Karmalkar. “In addition, the model simulation indicates that high elevation Pacific slopes and the Caribbean lowlands will receive up to 30 percent less precipitation. Simulations also indicate an overall increase in the height of the cloud base of up to 300 meters.”

According to Karmalkar, as temperatures rise, various ecosystems will try to migrate to where they are comfortable, moving in an upslope direction in this case. As they migrate, plants and animals will disturb other species, and eventually run out of space as they reach the top of the mountains. The result may be a loss of many species that can’t survive the new conditions.

“After the extinction of the golden toad sometime between 1987 and 1989, corresponding with a warm event in the Pacific Ocean, scientists began relating climate change to the loss of biodiversity in Costa Rica,” says Karmalkar. “Since then, the Monteverde Institute has been documenting biological changes that could be related to climate change.”

Karmalkar plans to study the entire region of Central America, determining large climate dynamics of the region and how that will change in the future. “Central America has a unique annual cycle of precipitation, with a midsummer drought that occurs during July and August,” says Karmalkar. “Knowing how climate change will affect this cycle will be important for agriculture, which is an integral part of the economy of the region.”

Ambarish Karmalkar | Newswise Science News
Further information:
http://www.umass.edu/newsoffice

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>