Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spray Improves Plants’ Cold Tolerance

10.07.2008
Studies indicate a spray-on formula increases plants’ tolerance of cold temperatures by several degrees.

The spray, which is not yet commercially available, can improve plants’ cold tolerance between 2.2 and 9.4 degrees Fahrenheit, depending upon the species, according to Dr. David Francko, a professor of botany who co-developed the spray and who serves as dean of The University of Alabama graduate school and assistant vice president for academic affairs.

Research results indicate the spray, which the developers have named Freeze-Pruf, is effective on a variety of plants, including palms, tropical houseplants, bananas, citrus plants and flowers. Commercial growers, including those growing edible bananas in south Alabama, would benefit from the longer growing season that a more cold tolerant plant would provide.

“It moves your temperature zone about 200 miles, so it’s highly significant,” Francko said of the spray’s impact on banana plants. “For growers in the Mobile area, for example, treated plants would sustain the same damage that someone in Orlando would have who’s not treating their plants.”

Francko, who developed the spray along with Kenneth Wilson, Quinn Li and Alejandra Equiza, all from Miami (Ohio) University, envisions the spray also appealing to backyard gardeners looking to protect flowers from a late frost and nursery owners looking to cash in on an approved appearance for their high dollar ornamentals.

A patent application on the product, a novel mixture that combines five ingredients in a water-based spray formula, was filed earlier this year. The inventors are working with The University of Alabama's Office for Technology Transfer on the possibility of licensing the product to a company for commercial production or, alternatively, forming a UA spin-off venture to commercialize the technology.

“Each ingredient has a different function, but when you put them all together you get an effect that is larger than any single component, alone,” Francko said. “It’s non-toxic, it’s cheap, and the idea is to apply it once per season.” Each of the ingredients in Freeze-Pruf is already used, for other reasons, in various foods or in food production.

Francko, who received widespread media attention, including a national television appearance alongside Martha Stewart, following his 2003 publication of “Palms Won’t Grow Here and Other Myths,” called cold tolerance products “one of the holy grails of horticulture.

“There are a number of existing patents designed to improve cold tolerance,” Francko said, “but the best that is out there gets you about 1 to 2 degrees centigrade, or 2 to 4 degrees Fahrenheit, of freeze protection.”

And the existing sprays, Francko says, typically protect plants in weather only as low as the mid to upper 20s Fahrenheit. “Our spray works all the way down to below zero Fahrenheit, depending on the plant you’re working on. It really does take advantage of the plant’s genetic pre-adaptation and improves it.”

Plants naturally use two mechanisms in attempts to survive cold, said Francko. Similar to how a vehicle’s radiator contains a cryoprotectant which prevents it from freezing, plants have a built-in non-toxic version which allows cells to “super cool” below the normal temperature at which water freezes. Secondly, Francko said, even when ice does form within some plants, another natural mechanism enables them to sometimes survive ice crystal damage.

“Anything that you do to improve plant cold tolerance, you want to enhance those two mechanisms,” Francko said. “Nothing in our formulation is part of the normal pathway that a plant uses to acclimate to the cold. So, we are adding extra capacity to what the plant normally can do, not replacing or diminishing that native capacity,” said Francko.

Freeze-Pruf lowers both the temperature at which damage first becomes noticeable in plants as well as the temperature that would normally kill the plant, according to the research results. “It protects both the foliage and the flower,” Francko said.

The formula was scientifically tested in the laboratory and in the field, using both visual damage and the results of photosynthetic assays to measure foliar and flower damage. The photosynthetic assay was a biochemical analysis to check the spray’s effectiveness at the sub-cellular level.

The spray is already cost effective, Francko said, and researchers are exploring possible ways to perfect it so even smaller quantities of spray would bring similar results.

Note: To request art, contact cbryant@ur.ua.edu

Chris Bryant | Newswise Science News
Further information:
http://www.ur.ua.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>