Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Voltage Sensor - Researchers Catch Ion Channels In Their Opening Act

10.07.2008
Each thought or action sends a million electrical signals pulsing through your body. At the heart of the process of generating these electrical impulses is the ion channel.

A new study by researchers from the University of Illinois measures movements smaller than one-billionth of a meter in ion channels. This movement is critical to how these tiny pores in the cell membrane open and close in response to changes in voltage across the membrane. The findings appear this week in the journal Neuron.

Ion channels belong to a special class of proteins embedded in the oily membranes of the cell. They regulate the movement of charged particles, called ions, into and out of the cell. Much like water faucets that can be controlled by turning a knob, channels open or close in response to specific signals. For instance, ion channels that open in response to pressure on the skin regulate our sense of touch.

Voltage is an important switch that controls how some channels open. The voltage across the cell membrane depends on the balance of ions inside and outside the cell and also on the type of ions. Voltage-gated channels are critical for transmitting messages from the brain to different parts of the body by means of nerve cells.

“There has been a large controversy in the field with regards to how these channels respond to voltage,” said University of Illinois physics professor Paul Selvin, who led the study. The controversy centers on a key segment of the ion channel called the voltage sensor.

The voltage sensor gauges the voltage across the membrane and instructs the channel to open or close.

One model for the movement of the voltage sensor suggests that it moves up and down by only a small amount, tugging on the pore of the ion channel and opening it just enough for ions to get through. In 2003, Roderick MacKinnon, who won a Nobel Prize in chemistry for his work on the X-ray crystal structures of ion channels, proposed a competing idea, the “paddle model.” This idea involved a large movement of the voltage sensor across the membrane. X-ray crystal structures provide snapshots of proteins in exquisite detail, allowing researchers to look at the positions of every atom.

According to Selvin, a problem with the crystal structure is that it only offers a static snapshot of what the protein looks like and provides only limited information about how different parts of the protein move. Another concern is that the conditions used to obtain protein crystals sometimes alter the original structure of the protein.

In the new study, postdoctoral researcher David Posson worked with Selvin to put the models of voltage sensor movement to the test.

They studied the voltage sensor segment in a specific ion channel called the Shaker potassium channel. This protein was first discovered in fruit flies after researchers observed that a mutation in the channel caused the flies to vigorously shake.

To preserve channels in their original state, Posson studied ion channels inserted into the membranes of frog eggs. He tested the two models using a fluorescence technique called Lanthanide resonance energy transfer (LRET) which allowed him to measure small movements in proteins. The technique involves the use of a special pair of molecular bulbs that glow either brightly or dimly depending on how far apart they are. The measurement is sensitive to movements as small as one-billionth of a meter. Posson also needed a way to control the voltage across the membrane.

He used an approach called electrophysiology that involves inserting electrodes into the frog egg. This gave him the ability to change the voltage across the membrane and regulate channel opening.

“Our approach brings together two distinct biophysical techniques, electrophysiology and fluorescence, which have been independently useful for the study of proteins,” Posson said.

To map the movement of the voltage sensor during channel opening, Posson measured distances from several different vantage points on the protein.

“It’s a lot like dispatching a team of molecular surveyors that stand at specific positions on the surface of a protein and collect distances from point

A to point B,” Posson said. “With enough measurements, the surveyors can build a map of the three dimensional shape of the protein.” Posson discovered that the largest distances traversed by the sensor were about two to three times smaller than what was predicted by the paddle model. It showed that the sensor moves by only a small amount to allow the flow of ions.

“We are seeing a clear result that the movement of the sensor isn’t super teeny, and isn’t super huge,” Posson said. The measurements challenge models that predicted large movements of the protein segments, such as the paddle model. The findings also refute models that have a near zero movement of the sensor region. “It’s a small piece to the puzzle of how the voltage sensor moves” Selvin said.

Kaushik Ragunathan | University of Illinois
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>