Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M study: Herceptin targets breast cancer stem cells

09.07.2008
HER2 gene causes cancer stem cells to multiply, spread

A gene that is overexpressed in 20 percent of breast cancers increases the number of cancer stem cells, the cells that fuel a tumor’s growth and spread, according to a new study from the University of Michigan Comprehensive Cancer Center.

The gene, HER2, causes cancer stem cells to multiply and spread, explaining why HER2 has been linked to a more aggressive type of breast cancer and to metastatic disease, in which the cancer has spread beyond the breast, the researchers say.

Further, the drug Herceptin, which is used to treat HER2-positive breast cancer, was found to target and destroy the cancer stem cells. Results of the study appear online in the journal Oncogene.

“This work suggests that the reason drugs that target HER2, such as Herceptin and Lapatanib, are so effective in breast cancer is that they target the cancer stem cell population. This finding provides further evidence for the cancer stem cell hypothesis,” says study author Max S. Wicha, M.D., Distinguished Professor of Oncology and director of the U-M Comprehensive Cancer Center.

The cancer stem cell hypothesis says that tumors originate in a small number of cells, called cancer stem cells, and that these cells are responsible for fueling a tumor’s growth. These cells represent fewer than 5 percent of the cells in a tumor. Wicha’s lab was part of the team that first identified stem cells in human breast cancer in 2003.

In the current study, researchers found that breast cancer cells overexpressing the HER2 gene had four to five times more cancer stem cells, compared to HER2-negative cancers. In addition, the HER2-positive cells caused the cancer stem cells to invade surrounding tissue, suggesting that HER2 is driving the invasiveness and spread of cancer.

The researchers then looked at the drug Herceptin, which is used to treat HER2-positive breast cancer. They found Herceptin reduced the number of cancer stem cells in the HER2-positive breast cancer cell lines by 80 percent, dropping it to the same levels seen in HER2-negative cell lines.

When HER2 was not overexpressed in the cell cultures, the researchers found, the cancer stem cell population did not increase. Nor did Herceptin have any effect on the HER2-negative cells, which is consistent with how Herceptin is used in the clinic.

“We are now studying what pathways are activated by HER2 overexpression. Our hope is that we could develop inhibitors of these pathways that might be effective in targeting cancer stem cells in women whose tumors do not overexpress HER2 or those who are resistant to Herceptin,” says study author Hasan Korkaya, Ph.D., a U-M research fellow in internal medicine.

Breast cancer statistics: 184,450 Americans will be diagnosed with breast cancer this year and 40,930 will die from the disease, according to the American Cancer Society. About 20 percent of breast cancers are considered HER2-positive.

Additional authors: Amanda K. Paulson, a U-M undergraduate student, and Flora Iovino, a U-M research fellow in internal medicine

Funding: National Institutes of Health, National Cancer Institute, A. Alfred Taubman Medical Research Institute at the U-M Medical School

Reference: Oncogene, advance online publication June 30, 2008; doi: 10.1038/onc.2008.207

Resources:
U-M Cancer AnswerLine, 800-865-1125
Cancer’s Stem Cell Revolution, www.mcancer.org/stemcells

Nicole Fawcett | University of Michigan
Further information:
http://www.mcancer.org/stemcells
http://www.umich.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>