Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Birds Migrate Together At Night In Dispersed Flocks

A new analysis indicates that birds don’t fly alone when migrating at night. Some birds, at least, keep together on their migratory journeys, flying in tandem even when they are 200 meters or more apart.

The study, from researchers at the University of Illinois and the Illinois Natural History Survey, appears this month in Integrative and Comparative Biology. It is the first to confirm with statistical data what many ornithologists and observers had long suspected: Birds fly together in loose flocks during their nocturnal migration.

Researchers have spent decades trying to determine how birds migrate at night, when most bird migration occurs. But nighttime tracking of tiny flying objects a quarter mile to a half mile up is no easy task. They have used stationary light beams, radar-mounted tracking spot lamps and long-range radar to try to figure out what is going on in the night sky. Some have even watched birds cross the face of the moon.

Decades of such observations suggested that birds travel together at night, but not in compact flocks as they do during the day, said principal investigator Ronald Larkin, a professor of animal biology, who conducted the new study with Robert Szafoni. Larkin is a wildlife ecologist with the Illinois Natural History Survey, where Szafoni also worked as a research scientist. Sfazoni currently is an affiliate of the INHS.

Previous studies “sometimes very strongly suggested that the birds were flying tens of meters apart and yet somehow keeping together,” Larkin said. But the evidence for this was “indirect and suggestive,” he said.

Even if it could be established that the birds were flying in groups, Larkin said, no one knew whether they were simply being swept along together passively or whether they were actively, intentionally, traveling together.

In the new analysis, the researchers took a fresh look at bird-flight data Larkin had collected in the 1970s and ’80s using low-power-density tracking radar. The radar directs microwaves in a narrow cone – a “pencil-beam” that can be pointed at virtually any target within range.

“If there is a bird target here, you can see it on the radar display as an echo,” Larkin said. “You throw a switch and it locks onto the target, it tracks the target, and wherever the bird flies, the radar points at it.”

The radar kept track of a target’s distance (from the radar), altitude and direction of travel over time. It also provided data used to calculate the frequency of a target’s wing beats. Since the radar could also track flying insects and other arthropods, the wing beat data would be important for distinguishing birds from bugs.

In collecting the data, Larkin, Szafoni and colleagues had used the radar in a new way. Once the radar operator had identified a flying object that might be a bird and began tracking its flight, he or she looked for other objects entering the radar’s beam. If another potential target appeared, the radar could follow it for a few seconds before switching back to the first. By repeatedly switching back and forth between two targets, the operator could potentially detect the discrete flight details of two birds at a time.

Determining whether two birds were actively traveling together was tricky, Larkin said.

“Even back in the 1970s it hit me that you can have two birds flying absolutely parallel in the same direction and at the same height, but they can be flying at such a different speed that one of them gains on the other and they’re just, you know, automobiles passing on the expressway,” he said. “They’re simply taking the same route and not keeping together.”

Similarly, two animals may be going at similar speeds but at a slightly varying angle to one another.

“After a while they would be kilometers apart,” Larkin said. This would be clear evidence that the birds were not traveling together.

After analyzing dozens of trials, the researchers determined that a significant proportion of the pairs of birds they had tracked were flying at the same altitude, at the same speed and in the same direction. Some of these birds were quite far apart, more than 200 meters away from each other – a distance of nearly two football fields – and yet they were traveling together.

To determine whether the birds were just being swept passively along by prevailing winds or whether they were actively staying together, the researchers analyzed the flight patterns of insects and other arthropods occupying the same air space at the same time. These tiny creatures would be at the mercy of the wind and so would give the researchers a reliable picture of the pattern of air currents.

That analysis demonstrated that the birds were following their own course and were not simply being blown along by the wind.

“To me, that’s the marvelous thing – that they’re flying in social groups in the middle of the night in the middle of the air, over territory most of them have never been over before,” Larkin said.

Editor’s note: To reach Ronald Larkin, call 217-333-7513; e-mail:

Diana Yates | University of Illinois
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>