Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Birds Migrate Together At Night In Dispersed Flocks

08.07.2008
A new analysis indicates that birds don’t fly alone when migrating at night. Some birds, at least, keep together on their migratory journeys, flying in tandem even when they are 200 meters or more apart.

The study, from researchers at the University of Illinois and the Illinois Natural History Survey, appears this month in Integrative and Comparative Biology. It is the first to confirm with statistical data what many ornithologists and observers had long suspected: Birds fly together in loose flocks during their nocturnal migration.

Researchers have spent decades trying to determine how birds migrate at night, when most bird migration occurs. But nighttime tracking of tiny flying objects a quarter mile to a half mile up is no easy task. They have used stationary light beams, radar-mounted tracking spot lamps and long-range radar to try to figure out what is going on in the night sky. Some have even watched birds cross the face of the moon.

Decades of such observations suggested that birds travel together at night, but not in compact flocks as they do during the day, said principal investigator Ronald Larkin, a professor of animal biology, who conducted the new study with Robert Szafoni. Larkin is a wildlife ecologist with the Illinois Natural History Survey, where Szafoni also worked as a research scientist. Sfazoni currently is an affiliate of the INHS.

Previous studies “sometimes very strongly suggested that the birds were flying tens of meters apart and yet somehow keeping together,” Larkin said. But the evidence for this was “indirect and suggestive,” he said.

Even if it could be established that the birds were flying in groups, Larkin said, no one knew whether they were simply being swept along together passively or whether they were actively, intentionally, traveling together.

In the new analysis, the researchers took a fresh look at bird-flight data Larkin had collected in the 1970s and ’80s using low-power-density tracking radar. The radar directs microwaves in a narrow cone – a “pencil-beam” that can be pointed at virtually any target within range.

“If there is a bird target here, you can see it on the radar display as an echo,” Larkin said. “You throw a switch and it locks onto the target, it tracks the target, and wherever the bird flies, the radar points at it.”

The radar kept track of a target’s distance (from the radar), altitude and direction of travel over time. It also provided data used to calculate the frequency of a target’s wing beats. Since the radar could also track flying insects and other arthropods, the wing beat data would be important for distinguishing birds from bugs.

In collecting the data, Larkin, Szafoni and colleagues had used the radar in a new way. Once the radar operator had identified a flying object that might be a bird and began tracking its flight, he or she looked for other objects entering the radar’s beam. If another potential target appeared, the radar could follow it for a few seconds before switching back to the first. By repeatedly switching back and forth between two targets, the operator could potentially detect the discrete flight details of two birds at a time.

Determining whether two birds were actively traveling together was tricky, Larkin said.

“Even back in the 1970s it hit me that you can have two birds flying absolutely parallel in the same direction and at the same height, but they can be flying at such a different speed that one of them gains on the other and they’re just, you know, automobiles passing on the expressway,” he said. “They’re simply taking the same route and not keeping together.”

Similarly, two animals may be going at similar speeds but at a slightly varying angle to one another.

“After a while they would be kilometers apart,” Larkin said. This would be clear evidence that the birds were not traveling together.

After analyzing dozens of trials, the researchers determined that a significant proportion of the pairs of birds they had tracked were flying at the same altitude, at the same speed and in the same direction. Some of these birds were quite far apart, more than 200 meters away from each other – a distance of nearly two football fields – and yet they were traveling together.

To determine whether the birds were just being swept passively along by prevailing winds or whether they were actively staying together, the researchers analyzed the flight patterns of insects and other arthropods occupying the same air space at the same time. These tiny creatures would be at the mercy of the wind and so would give the researchers a reliable picture of the pattern of air currents.

That analysis demonstrated that the birds were following their own course and were not simply being blown along by the wind.

“To me, that’s the marvelous thing – that they’re flying in social groups in the middle of the night in the middle of the air, over territory most of them have never been over before,” Larkin said.

Editor’s note: To reach Ronald Larkin, call 217-333-7513; e-mail: r-larkin@illinois.edu.

Diana Yates | University of Illinois
Further information:
http://www.news.uiuc.edu/news/08/0707birds.html

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>