Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC researchers identify tumor suppressor that manages cellular cleaning and recycling proceses

07.07.2008
Findings provide insight into regulation of trafficking pathways
Researchers at the University of Southern California (USC) have identified a specific tumor suppressor that manages membrane traffic routes for cellular cleaning and recycling.

The study will be published in the July issue of the journal Nature Cell Biology, and is now available online.

"Our studies indicate that UVRAG tumor suppressor functionally connects and manages two distinct but converged membrane traffic routes for garbage cleaning and cargo recycling," says Chengyu Liang, M.D., Ph.D., assistant professor of research in the Department of Molecular Microbiology and Immunology at the Keck School of Medicine of USC.

The study identified a novel mechanism of the UVRAG tumor suppressor in regulation of autophagy, a mechanism that enables cells to digest or turn over their own contents for maintaining homeostasis (a balanced, stable condition) and responding to various stresses.

Autophagy is marked by the assembly of specialized vesicles called autophagosomes (the cellular equivalent of garbage bags) that engulf damaged proteins, organelles and invading microbes. The "bagged garbage" is then delivered to lysosomes (the cell's garbage disposal system) through autophagic trafficking that involves autophagosome-lysosome fusion. This fusion disposes of waste with the help of lysosomal enzymes for recycling.

The findings of the study indicate that the tumor suppressor UVRAG not only facilities autophagosome formation, but also facilitates autophagosome maturation by association with the C Vps complex, a cellular machinery that facilitates membrane fusion.

In addition to identifying a novel mechanism of the UVRAG tumor suppressor in autophagy regulation, the study also identified UVRAG as an important effector protein in membrane trafficking and demonstrated the connection between endocytic and autophagic trafficking. The research conducted by Liang and colleagues with Jae U. Jung, Ph.D., professor and chair of the Department of Molecular Microbiology and Immunology at the Keck School of Medicine, suggests a functional connection and coordinated regulation of two distinct but converged membrane trafficking pathways.

"The report provides new insights into understanding some human diseases with compromised autophagic and endosomal trafficking, including cardiomyopathy (a disease of the heart muscle), myopathy (a neuromuscular disease), neuronal ceroid lipofuscinosis (genetic disorders of nerve cells) and Danon Disease )a genetic disorder characterized by heart problems)," Liang says.

The findings warrant further study into whether the UVRAG-mediated trafficking activity contributes to its tumor suppression function, she says.

Meghan Lewit | EurekAlert!
Further information:
http://www.usc.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>