Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


USC researchers identify tumor suppressor that manages cellular cleaning and recycling proceses

Findings provide insight into regulation of trafficking pathways
Researchers at the University of Southern California (USC) have identified a specific tumor suppressor that manages membrane traffic routes for cellular cleaning and recycling.

The study will be published in the July issue of the journal Nature Cell Biology, and is now available online.

"Our studies indicate that UVRAG tumor suppressor functionally connects and manages two distinct but converged membrane traffic routes for garbage cleaning and cargo recycling," says Chengyu Liang, M.D., Ph.D., assistant professor of research in the Department of Molecular Microbiology and Immunology at the Keck School of Medicine of USC.

The study identified a novel mechanism of the UVRAG tumor suppressor in regulation of autophagy, a mechanism that enables cells to digest or turn over their own contents for maintaining homeostasis (a balanced, stable condition) and responding to various stresses.

Autophagy is marked by the assembly of specialized vesicles called autophagosomes (the cellular equivalent of garbage bags) that engulf damaged proteins, organelles and invading microbes. The "bagged garbage" is then delivered to lysosomes (the cell's garbage disposal system) through autophagic trafficking that involves autophagosome-lysosome fusion. This fusion disposes of waste with the help of lysosomal enzymes for recycling.

The findings of the study indicate that the tumor suppressor UVRAG not only facilities autophagosome formation, but also facilitates autophagosome maturation by association with the C Vps complex, a cellular machinery that facilitates membrane fusion.

In addition to identifying a novel mechanism of the UVRAG tumor suppressor in autophagy regulation, the study also identified UVRAG as an important effector protein in membrane trafficking and demonstrated the connection between endocytic and autophagic trafficking. The research conducted by Liang and colleagues with Jae U. Jung, Ph.D., professor and chair of the Department of Molecular Microbiology and Immunology at the Keck School of Medicine, suggests a functional connection and coordinated regulation of two distinct but converged membrane trafficking pathways.

"The report provides new insights into understanding some human diseases with compromised autophagic and endosomal trafficking, including cardiomyopathy (a disease of the heart muscle), myopathy (a neuromuscular disease), neuronal ceroid lipofuscinosis (genetic disorders of nerve cells) and Danon Disease )a genetic disorder characterized by heart problems)," Liang says.

The findings warrant further study into whether the UVRAG-mediated trafficking activity contributes to its tumor suppression function, she says.

Meghan Lewit | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>