Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ski Faster with Camera-less Fusion Motion Capture

01.07.2008
Professional skiers can now learn how to ski faster with the aid of a new system used to capture 3D motion of athletic movements – Fusion Motion Capture (FMC). Featured in Wiley-Blackwell’s journal, Sports Technology, this is the first time the study of FMC has been published in a journal.

This pilot study “Fusion Motion Capture: a Prototype System using Inertial Measurement Units and GPS for the Biomechanical Analysis of Ski Racing” uses FMC to capture 3D kinetics and kinematics of alpine ski racing and shows how this new technology can overcome the technological difficulties associated with athlete performance monitoring in an alpine environment.

FMC is a system which uses small sensors attached to the athlete’s limbs, helmet and soles to generate raw data from the athlete’s movement. The numbers are then crunched with the aid of a computer to reproduce accurate estimates of the position, velocity and acceleration of the athlete’s limb segments.

Lead author, Matthew Brodie, Massey University, says “With FMC, it is possible to capture motion and dynamics of alpine ski racing throughout the ski run while maintaining high resolution. This is the first time full body motion of an athlete skiing an entire course can be captured with results returned as soon as the run is completed.”

FMC is developed to capture motion in large spaces which is impractical for video motion capture. While video analysis requires several weeks to measure only a few turns, FMC is able to collect and analyze several hundred turns in a single day.

Mr. Brodie adds. “FMC enabled biomechanical analysis which provides insights into how technique, race strategy and equipment changes can increase the athlete’s speed. It is now possible to measure how ski friction, wind drag, gravity and ground reaction forces affect performance and see how variability in technique is beneficial to race time.”

Alina Boey | alfa
Further information:
http://www.blackwellpublishing.com/press/pressitem.asp?ref=1808

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

Uncovering decades of questionable investments

18.01.2018 | Business and Finance

Novel chip-based gene expression tool analyzes RNA quickly and accurately

18.01.2018 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>