Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Portable device effective in zapping away migraine pain

A novel electronic device designed to "zap" away migraine pain before it starts has proven to be the next form of relief for those suffering from the debilitating disease, according to a study conducted at The Ohio State University Medical Center.

Results of the study, to be presented Friday (6/27) at the annual American Headache Society meeting in Boston, found that the experimental device is safe and effective in eliminating headaches when administered during the onset of the migraine.

With one in eight Americans suffering from chronic migraines, Dr. Yousef Mohammad, a neurologist and principal investigator of the study at Ohio State's Medical Center, says the study's results are promising given that only 50 to 60 percent of migraine patients respond to traditional migraine drug treatments.

The noninvasive transcranial magnetic stimulator (TMS) device interrupts the aura phase of the migraine, often described as electrical storms in the brain, before they lead to headaches. Migraine sufferers often describe "seeing" showers of shooting stars, zigzagging lines and flashing lights, and experiencing loss of vision, weakness, tingling or confusion, followed by intense throbbing head pain, nausea and vomiting.

Previous studies, conducted at Ohio State, using a heavy and bulky TMS device, reduced headache pain. To expedite treatment at home, a portable hand-held device was developed and tested.

"Stimulation with magnetic pulses from the portable TMS device proved effective for the migraine patients," said Mohammad. "Because of the lack of adverse events in this trial and the established safety of the TMS device, this is a promising treatment for migraines with aura. This sets the stage for future studies in migraines without aura."

The TMS device sends a strong electric current through a metal coil, which creates an intense magnetic field for about one millisecond. This magnetic pulse, when held against a person's head, creates an electric current in the neurons of the brain, interrupting the aura before it results in a throbbing headache.

"The device's pulses are painless and safe," Mohammad said. "Since almost all migraine drugs have some side effects, and patients are prone to addiction from narcotics, or developing headaches from frequent use of over-the-counter medication, the TMS device holds great promise for migraine sufferers."

Of the 164 patients involved in the multi-center, randomized clinical trial receiving TMS treatment, 39 percent were pain free at the two-hour post-treatment point, compared to 22 percent in the group receiving "sham" pulses. There were no differences reported related to adverse reactions between the two groups.

It was previously believed that migraine headaches start with vascular constriction, which results in an aura, followed by vascular dilation that will lead to a throbbing headache. However, in the late 1990's it was suggested that neuronal electrical hyperexcitablility resulted in a throbbing headache. This new understanding of the migraine mechanism assisted in the development of the TMS device.

Sherri L. Kirk | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>