Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Portable device effective in zapping away migraine pain

30.06.2008
A novel electronic device designed to "zap" away migraine pain before it starts has proven to be the next form of relief for those suffering from the debilitating disease, according to a study conducted at The Ohio State University Medical Center.

Results of the study, to be presented Friday (6/27) at the annual American Headache Society meeting in Boston, found that the experimental device is safe and effective in eliminating headaches when administered during the onset of the migraine.

With one in eight Americans suffering from chronic migraines, Dr. Yousef Mohammad, a neurologist and principal investigator of the study at Ohio State's Medical Center, says the study's results are promising given that only 50 to 60 percent of migraine patients respond to traditional migraine drug treatments.

The noninvasive transcranial magnetic stimulator (TMS) device interrupts the aura phase of the migraine, often described as electrical storms in the brain, before they lead to headaches. Migraine sufferers often describe "seeing" showers of shooting stars, zigzagging lines and flashing lights, and experiencing loss of vision, weakness, tingling or confusion, followed by intense throbbing head pain, nausea and vomiting.

Previous studies, conducted at Ohio State, using a heavy and bulky TMS device, reduced headache pain. To expedite treatment at home, a portable hand-held device was developed and tested.

"Stimulation with magnetic pulses from the portable TMS device proved effective for the migraine patients," said Mohammad. "Because of the lack of adverse events in this trial and the established safety of the TMS device, this is a promising treatment for migraines with aura. This sets the stage for future studies in migraines without aura."

The TMS device sends a strong electric current through a metal coil, which creates an intense magnetic field for about one millisecond. This magnetic pulse, when held against a person's head, creates an electric current in the neurons of the brain, interrupting the aura before it results in a throbbing headache.

"The device's pulses are painless and safe," Mohammad said. "Since almost all migraine drugs have some side effects, and patients are prone to addiction from narcotics, or developing headaches from frequent use of over-the-counter medication, the TMS device holds great promise for migraine sufferers."

Of the 164 patients involved in the multi-center, randomized clinical trial receiving TMS treatment, 39 percent were pain free at the two-hour post-treatment point, compared to 22 percent in the group receiving "sham" pulses. There were no differences reported related to adverse reactions between the two groups.

It was previously believed that migraine headaches start with vascular constriction, which results in an aura, followed by vascular dilation that will lead to a throbbing headache. However, in the late 1990's it was suggested that neuronal electrical hyperexcitablility resulted in a throbbing headache. This new understanding of the migraine mechanism assisted in the development of the TMS device.

Sherri L. Kirk | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Studies and Analyses:

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

nachricht Pan-European study on “Smart Engineering”
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>