Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bird watchers, space technology come together in new MSU study

26.06.2008
Almost every June for 30 years, Terry McEneaney drove around Yellowstone National Park and listed every bird he heard along three routes.

Park ornithologist at the time, he would drive to a designated spot and identify the birds there. Then he'd drive another half mile, repeat the process and continue until he had stopped 50 times in 24.5 miles for the North American Breeding Bird Survey. Trying to finish before the birds quit singing, he'd ignore the scenery as best he could and try not to let the traffic bother him.

"You have to start very early and have to be done about 9:30. Birds stop singing about 9:30," McEneaney said. "You have to really hustle from point to point."

McEneaney no longer works for the National Park Service. He retired in November. But the information he gathered is part of a new Montana State University study that looks at biodiversity across North America. Thousands of bird watchers and a satellite sensor developed at the University of Montana yielded data for the continental study.

"I had a feeling somebody would use it somehow," McEneaney said.

MSU's results will be described in at least three scientific papers, the first to be published this summer in the journal "Remote Sensing of the Environment," said Linda Phillips, lead author and a research scientist at MSU. Co-authors are Andy Hansen, an MSU ecologist; and Curtis Flather with the USDA Forest Service in Fort Collins, Colo.

The paper reports that the UM satellite sensor, a Moderate Resolution Imaging Spectroradiometer, works far better than other types of remote sensing technology for broad-scaled ecological studies, Phillips said. First launched in 1999 on the Terra satellite, MODIS improves on previous technology and provides more comprehensive measures of vegetation.

"In simple terms, MODIS is like an expensive Nikon camera compared to a pocket disposable camera for picture quality," said Steve Running of UM, Regents Professor of Ecology and director of the Numerical Terradynamics Simulation Group.

"It is very difficult to study bird breeding habitat over large area from ground surveys, as birds are so mobile," he added. "MODIS allows a broad regional view of the landscape similar to the view birds have from the air."

Running and a team at UM developed MODIS. The sensor detects information about vegetation across North America and sends it to a clearinghouse in Sioux Falls, S.D.

The bird data for MSU's study came from thousands of bird watchers -- mostly volunteers --who participated in the North American Breeding Bird Survey. The survey is a joint effort of the U.S. Geological Survey and the Canadian Wildlife Service to monitor the status and trends of some 400 bird populations. It began about 40 years ago.

The bird watchers, using the same techniques as McEneaney, covered almost 3,500 routes in the continental United States, Canada and Alaska, Phillips said. MSU obtained their reports from a clearinghouse in Maryland, then analyzed 1,390 of the routes and combined the results with those from MODIS.

"I'm sure the volunteers had no idea we would be using their data in such a sophisticated way," Phillips said.

Hansen said, "It's a really neat example of how volunteer efforts, mixed with NASA satellite program, allow us to learn things we never would have thought possible to examine at a national scale."

MSU's study typifies the kind of research conducted in his Landscape Biodiversity Lab and speaks well of the Montana University System, Hansen said.

"Who would have thought that our local universities were designing satellite sensors, being responsible for putting them in space, generating all this data and now we are using that data across the continent for understanding things like conservation and land use issues?" Hansen commented.

The next two papers from MSU's study will focus on ecological and management findings, the researchers said.

To read another story about a widespread ecology project involving MSU, see http://www.montana.edu/cpa/news/nwview.php?article=5941&log

Evelyn Boswell, (406) 994-5135 or evelynb@montana.edu

Evelyn Boswell | EurekAlert!
Further information:
http://www.montana.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>