Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lou Gehrig's protein found throughout brain, suggesting effects beyond motor neurons

19.06.2008
Two years ago researchers at the University of Pennsylvania School of Medicine discovered that misfolded proteins called TDP-43 accumulated in the motor areas of the brains of patients with amyotropic lateral sclerosis (ALS), or Lou Gehrig's disease.

Now, the same group has shown that TDP-43 accumulates throughout the brain, suggesting ALS has broader neurological effects than previously appreciated and treatments need to take into account more than motor neuron areas. Their article appeared in last month's issue of the Archives of Neurology.

"The primary implication for ALS patients is that we have identified a molecular target for new therapies," says co-author John Q. Trojanowski, MD, PhD, Director of Penn's Institute on Aging. "The other implication is that new therapies for ALS now need to go beyond treating only motor neurons."

Traditionally, ALS has been diagnosed based on muscle weakness and neurodegeneration of the upper and lower motor neurons that extend from the motor cortex to the spinal cord and brainstem motor neurons, which directly innervate voluntary muscles. For example, if you want to wiggle your big toe, the signal travels from the motor neuron in the cortex at the top of your head to a synapse on the lower spinal cord motor neurons in the lower back, which, in turn transmit the "wiggle" command by sending a signal to the muscles that move your big toe. Patients with ALS cannot wiggle their big toe or complete other voluntary muscle movements, including those carried out by their other extremities and eventually, by the diaphragm that moves air in and of their lungs.

The study was conducted by examining post-mortem brain tissue of 31 ALS patients. The accumulation of TDP-43 was imaged by detecting TDP-43 with an antibody specific for this protein. TDP-43 pathology was observed not only in the areas of the brain and spinal cord that control voluntary movements, as expected, but also in regions of the brain that involve cognition, executive functioning, memory, and involuntary muscle control. TDP-43 pathology was not observed in any of the controls that did not have ALS.

The pathological TDP-43 observed in ALS brains is different in two ways from normal TDP-43 that is found in most cells. The ALS-associated TDP-43 includes fragments of normal TDP-43 as well as other abnormally modified forms of TDP-43, and it is located in the cytoplasm of neurons; whereas, normal TDP-43 is found almost exclusively in the cell nucleus. In ALS, the pathological TDP-43 accumulates in large "globs," mainly in cell bodies.

"Our observation of TDP-43 in the brains of ALS patients suggests that ALS and two other neurodegenerative diseases called ALS- PLUS [ALS with cognitive impairments] and FTLD [frontotemporal lobar disease] may all have the same underlying molecular pathology involving abnormal TDP-43," says Trojanowski. "This constitutes a paradigm shift in the way we think about these diseases."

Current research is focused on understanding the basic biology of TDP-43 in cell culture systems. The research team is now trying to find out whether pathological TDP-43 causes nerve cells to lose their normal function or if they take on a toxic function. "The over-riding goal that drives our work is helping ALS patients," says Trojanowski.

Felix Geser, of Penn, was lead author on this study. Linda Wong, Maria Martinez-Lage, Lauren Elman, Leo McCluskey, Sharon Xie, and Virginia Lee, all of Penn, and Nicholas Brandmeir, of Albany Medical College, Albany, NY were co-authors. This research was supported by grants from the National Institute on Aging.

PENN Medicine is a $3.5 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #4 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System includes three hospitals — its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation's "Honor Roll" hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center — a faculty practice plan; a primary-care provider network; two multispecialty satellite facilities; and home care and hospice.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>