Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Largest ever Canadian study on osteoporosis informs health policy

18.06.2008
MUHC team shows Canadians without risk factors need bone density measurements only once every 5 years

Dr David Goltzman and his team from the Research Institute of the McGill University Health Centre (RI MUHC) and McGill University – along with colleagues from across Canada – have issued new recommendations to public health authorities about how to best cope with osteoporosis, a bone disease which leads to increased risk of fracture, particularly in the elderly. Their recommendations derive from the latest results of the Canadian Multicentre Osteoporosis Study (CaMos), which will be published June 16 in the Canadian Medical Association Journal (CMAJ).

Osteoporosis results from reduced bone mineral density (BMD), disrupted bone microarchitecture and alteration in the distribution and variety of non-collagenous proteins in bone, all of which serve to place sufferers at far greater risk of bone fractures, which can be life-threatening in the elderly. The measure of BMD is the main predictive marker of the disease.

"Osteoporosis has enormous impact on public health and on the quality of life of patients," Dr. Goltzman said.

The latest CaMos results confirm that, for women, menopause is a critical period during which bone mineral density decreases in all the bones studied. More specifically: an average decrease of 6.8% over 5 years was observed in the hip. Significant BMD loss also occurs after age 70, mainly in the hip bone. In men, BMD decreases more gradually, although it starts earlier, around the age of 40.

The fact that rapid BMD loss occurs after menopause was already known but had never been previously quantified, while the second period of BMD decline after age 70 is a completely new discovery.

"These findings provide new insight into the public health impact of osteoporosis," Dr. Goltzman explained. "Population aging combined with the potential human and financial consequences of fractures, notably hip fractures represent a major challenge. However, knowing the age at which bone loss is more likely to occur opens up new avenues for preventive measures."

The CaMos study involves nine other centres across Canada that are coordinated from the MUHC in Montreal. It has recruited more than 10,000 participants since 1996. The long duration and the national scale of the project have enabled researchers to determine that participants' BMD varies very slowly in the absence of other risk factors.

"The scope of the CaMos study means that we can produce data that are representative of the entire Canadian population, in order to help improve official recommendations, and to enhance the prevention, diagnosis and treatment of osteoporosis," said Dr Goltzman.

"In light of our results, we think that, in the absence of other risk factors, BMD should be measured every five years, instead of every two years, as is currently the case," he continued. "Of course, this frequency should be modified if the person does have other risk factors.

Dr. David Goltzman is the co-principal investigator of the CaMos project. He is a researcher in the Musculoskeletal Disorders axis at the RI MUHC and Professor of Medicine (Endocrinology/Metabolism) and of Physiology at McGill University's Faculty of Medicine.

The CaMos study is sponsored by the Canadian Institutes of Health Research (CIHR), Merck Frosst Canada Ltd., Eli Lilly Canada Inc., Novartis Pharmaceuticals Inc., the Alliance for Better Bone Health (Sanofi-Aventis and Procter & Gamble Pharmaceuticals Canada Inc.), the Dairy Farmers of Canada and the Arthritis Society of Canada.

About the Canadian Multicentre Osteoporosis Study (CaMos)

Initiated in 1996, CaMos is a prospective, population-based epidemiologic study involving a collaboration of leading Canadian experts, 10 study centres in 7 provinces and more than 10,000 participants across Canada. This largest ever Canadian study on osteoporosis, recognized internationally for its validity and quality, features a sample representative of the Canadian population and a long-term perspective with almost 70% retention after 10 years of follow-up. Study results have helped to inform health policy and improve osteoporosis prevention, diagnosis, and treatment in Canada. For more information on CaMos please visit www.camos.org.

The McGill University Health Centre (MUHC) is a comprehensive academic health institution with an international reputation for excellence in clinical programs, research and teaching. Its partner hospitals are the Montreal Children's Hospital, the Montreal General Hospital, the Royal Victoria Hospital, the Montreal Neurological Hospital, the Montreal Chest Institute and the Lachine Hospital. The goal of the MUHC is to provide patient care based on the most advanced knowledge in the health care field and to contribute to the development of new knowledge.www.muhc.ca

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health-care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, the university health center affiliated with the Faculty of Medicine at McGill University. The institute supports over 600 researchers, nearly 1200 graduate and post-doctoral students and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge.

The Research Institute of the MUHC is supported in part by the Fonds de la recherche en santé du Québec.

For more information please contact:

Isabelle Kling
Communications Coordinator (Research)
MUHC Public Relations and Communications
(514) 843 1560
isabelle.kling@muhc.mcgill.ca
Mark Shainblum
Media Relations Officer (Research)
McGill University
(514) 398-2189
mark.shainblum@mcgill.ca

Isabelle Kling | EurekAlert!
Further information:
http://www.muhc.mcgill.ca
http://www.muhc.ca/research

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>