Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Children Learn Smart Behaviors Without Knowing What they Know

Young children show evidence of smart and flexible behavior early in life – even though they don’t really know what they’re doing, new research suggests.

In a series of experiments, scientists tested how well 4- and 5-year-olds were able to rely on different types of information to choose objects in a group. In some situations, they were asked to choose objects based on color and in some cases based on shape.

Results showed children could be trained to choose correctly, but still didn’t know why shape or color was the right answer in any particular context.

The findings go against one prominent theory that says children can only show smart, flexible behavior if they have conceptual knowledge – knowledge about how things work, said Vladimir Sloutsky, co-author of the study and professor of psychology and human development and the director of the Center for Cognitive Science at Ohio State.

“Children have more powerful learning skills than it was thought previously,” he said. “They can show evidence of flexible learning abilities without conceptual knowledge and without being aware of what they learned.”

Sloutsky conducted the study with Anna Fisher, a former graduate student at Ohio State now an assistant professor of psychology at Carnegie Mellon University. The study appears in the current issue of the journal Child Development.

Sloutsky gave an example of how children can show flexibility in thinking and behavior.

In a previous study by other researchers, 3- and 4-year-olds were found to be more likely to group items on the basis of color if the items were presented as food, but on the basis of shape when they were presented as toys.

“The argument has been that children couldn’t do this without understanding the properties of food and the properties of toys. So in order to be flexible you really need to understand what things are.

“But what we demonstrated is that children can acquire this flexibility without this deeper knowledge, and without realizing how they are being flexible.”

In their study, Sloutsky and Fisher had several groups of 4- and 5-year-olds participate in several experiments. In all of these experiments, children played a guessing game involving choosing objects on a computer screen. The game was played either in the upper right corner on the computer screen (with a yellow background) or in the lower left hand corner of the computer screen (with a green background).

They were shown one object and told it had a smiley face behind it. They then guessed which of the other two objects also had a smiley face behind it. In each case, one of the other objects had the same color but different shape as the original, while the other had the same shape but a different color.

The key was that when the game was in the upper right corner of the computer screen, the smiley face was always hidden behind the same-shaped item. When the game was presented in the lower left corner, the smiley face was hidden behind the item with the same color.

Some children were given training: after making a guess, they were told whether they were correct or not. These children soon learned where to find the smiley face.

Later, during testing, these children had no trouble correctly guessing where the smiley face was hidden, even though no feedback was given during the actual test.

But, Sloutsky said, “these children were not aware of what they learned. They didn’t know how they were making the correct choices.”

In several related experiments, the researchers tested whether children discovered the “rules” of this game – that shape was important when the game was played in the upper-right corner of the screen, and color was important when it was played in the lower-left corner– and whether they could follow the rule on their own.

The answer was that they did not figure out the rule or know how to use it.

Sloutsky said children in the experiments didn’t know the rules, but simply used associative learning – they figured out that in certain areas of the computer screen, they were better off choosing by shape, and in other areas by color.

“Children developed a running statistic about where they should choose color and where they should choose shape,” he said.

This type of learning goes on all the time with children, Sloutsky explained. For example, children learn that larger animals are generally stronger and more powerful than smaller animals, even though they know nothing about the biological reasons behind this.

The findings have implications for theories of how children learn and develop their cognitive abilities, he said.

“Children learn implicitly. They don’t need complex conceptual knowledge to show evidence of smart, flexible behavior.”

The study was supported by grants from the National Science Foundation and the Institute of Education Sciences in the U.S. Department of Education.

Contact: Vladimir Sloutsky (614) 688-5855;

Jeff Grabmeier | newswise
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>