Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Children Learn Smart Behaviors Without Knowing What they Know

Young children show evidence of smart and flexible behavior early in life – even though they don’t really know what they’re doing, new research suggests.

In a series of experiments, scientists tested how well 4- and 5-year-olds were able to rely on different types of information to choose objects in a group. In some situations, they were asked to choose objects based on color and in some cases based on shape.

Results showed children could be trained to choose correctly, but still didn’t know why shape or color was the right answer in any particular context.

The findings go against one prominent theory that says children can only show smart, flexible behavior if they have conceptual knowledge – knowledge about how things work, said Vladimir Sloutsky, co-author of the study and professor of psychology and human development and the director of the Center for Cognitive Science at Ohio State.

“Children have more powerful learning skills than it was thought previously,” he said. “They can show evidence of flexible learning abilities without conceptual knowledge and without being aware of what they learned.”

Sloutsky conducted the study with Anna Fisher, a former graduate student at Ohio State now an assistant professor of psychology at Carnegie Mellon University. The study appears in the current issue of the journal Child Development.

Sloutsky gave an example of how children can show flexibility in thinking and behavior.

In a previous study by other researchers, 3- and 4-year-olds were found to be more likely to group items on the basis of color if the items were presented as food, but on the basis of shape when they were presented as toys.

“The argument has been that children couldn’t do this without understanding the properties of food and the properties of toys. So in order to be flexible you really need to understand what things are.

“But what we demonstrated is that children can acquire this flexibility without this deeper knowledge, and without realizing how they are being flexible.”

In their study, Sloutsky and Fisher had several groups of 4- and 5-year-olds participate in several experiments. In all of these experiments, children played a guessing game involving choosing objects on a computer screen. The game was played either in the upper right corner on the computer screen (with a yellow background) or in the lower left hand corner of the computer screen (with a green background).

They were shown one object and told it had a smiley face behind it. They then guessed which of the other two objects also had a smiley face behind it. In each case, one of the other objects had the same color but different shape as the original, while the other had the same shape but a different color.

The key was that when the game was in the upper right corner of the computer screen, the smiley face was always hidden behind the same-shaped item. When the game was presented in the lower left corner, the smiley face was hidden behind the item with the same color.

Some children were given training: after making a guess, they were told whether they were correct or not. These children soon learned where to find the smiley face.

Later, during testing, these children had no trouble correctly guessing where the smiley face was hidden, even though no feedback was given during the actual test.

But, Sloutsky said, “these children were not aware of what they learned. They didn’t know how they were making the correct choices.”

In several related experiments, the researchers tested whether children discovered the “rules” of this game – that shape was important when the game was played in the upper-right corner of the screen, and color was important when it was played in the lower-left corner– and whether they could follow the rule on their own.

The answer was that they did not figure out the rule or know how to use it.

Sloutsky said children in the experiments didn’t know the rules, but simply used associative learning – they figured out that in certain areas of the computer screen, they were better off choosing by shape, and in other areas by color.

“Children developed a running statistic about where they should choose color and where they should choose shape,” he said.

This type of learning goes on all the time with children, Sloutsky explained. For example, children learn that larger animals are generally stronger and more powerful than smaller animals, even though they know nothing about the biological reasons behind this.

The findings have implications for theories of how children learn and develop their cognitive abilities, he said.

“Children learn implicitly. They don’t need complex conceptual knowledge to show evidence of smart, flexible behavior.”

The study was supported by grants from the National Science Foundation and the Institute of Education Sciences in the U.S. Department of Education.

Contact: Vladimir Sloutsky (614) 688-5855;

Jeff Grabmeier | newswise
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>