Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

£2.8million study to combat global food poverty

12.06.2008
A major new £2.8 million study at the University of Leeds will bring together researchers from medicine, plant science, ecology, social policy and the environment to focus on preventing future food crises in Sub-Saharan Africa.

The Human Health and Food Security Research Programme, funded with the University’s own money and resources, will examine how food production can be improved to ensure growers obtain the maximum nutritional value from their crops, as well as minimising damage to existing ecosystems. Partnerships with African universities and institutes are being developed to enable researchers to enhance research capacity in Sub-Saharan Africa.

The UN estimates that the current global food crisis has plunged an extra 100 million people into poverty across the globe. Drought and unpredictable weather patterns are having a major impact on the global harvest. In turn, lack of natural resources often leads African farmers to use their land in unsustainable ways, overusing it until crop yields decline severely.

The Food and Agriculture Organisation of the United Nations (FAO) estimates that 33 per cent of all Sub-Saharan Africans are undernourished.

Project leader Professor Howard Atkinson says, “Researchers from the School of Medicine will ensure that the programme has a strong emphasis on ensuring a nutritious diet free of fungal toxins and parasites to add to efforts of plant scientists on improving the yield of African staple crops.”

Many of the crops that survive well under stressful climatic conditions are not the ones that provide the healthiest diet: for example cassava survives well in dry conditions but is not particularly nutritious.

The Human Health and Food Security Research Programme is one of four projects being paid for via the University’s pioneering Transformation Fund which is supporting research into major global issues of our time. The fund is unique in that it comes from the University rather than corporate or government sponsors.

Professor Tim Benton, Pro-Dean for Research in the Faculty of Biological Sciences says, “If we consider all the problems facing the future of food production, from a growing world population, through to climate change and increased use of land for the production of bio-fuels, then by the middle of this century we will need far more agricultural land than we currently use. Even if we cut down all the rainforests, there is only enough available land to about double the global agricultural footprint - and that may not be enough. This is set against a background of an intrinsic danger of trying to increase food production too fast and therefore destroying the future fertility of land used in food production. The research project is about trying to find a way of increasing output sufficient for a healthy diet without destroying ecosystems.”

“Most current agricultural research looks at Western needs rather than the needs of the developing world, which is another reason why this programme is exceptional,” he adds.

This is especially important in areas where the land is becoming more arid, as in Africa. Over-grazing can lead to loss of vegetation, which in turn means the soil fails to hold together and can be blown away. Recovery time where soil is lost in this way can be up to hundreds of thousands of years.

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk
http://www.fbs.leeds.ac.uk

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>