Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown researchers work toward ending cartilage loss

05.06.2008
Brown University nanotechnology engineer Thomas Webster has published a first-ever study that shows how a surface of carbon nanotubes combined with electrical pulses could help regenerate cartilage naturally in the body.

Scientists have long wrestled with how to aid those who suffer cartilage damage and loss. One popular way is to inject an artificial gel that can imitate cartilage’s natural ability to act as the body’s shock absorber. But that solution is temporary, requiring follow-up injections.

Now Brown University nanotechnology specialist Thomas Webster has found a way to regenerate cartilage naturally by creating a synthetic surface that attracts cartilage-forming cells. These cells are then coaxed to multiply through electrical pulses. It’s the first study that has shown enhanced cartilage regeneration using this method; it appears in the current issue of the Journal of Biomedical Materials Research, Part A.

“Cartilage regeneration is a big problem,” said Webster, an associate professor in the Division of Engineering and the Department of Orthopaedics at Brown. “You don’t feel pain until significant cartilage damage has occurred and it’s bone rubbing on bone. That’s why research into how to regenerate cartilage is so important.”

Webster’s work involves carbon nanotubes, which are molecular-scale tubes of graphitic carbon that are among the stiffest and strongest fibers known and are great conductors of electrons. They are being studied intensively worldwide for a range of commercial, industrial and medical uses.

Webster and his team, including Brown researcher Dongwoo Khang and Grace Park from Purdue University, found that the tubes, due to their unique surface properties, work well for stimulating cartilage-forming cells, known scientifically as chondrocytes. The nanotube’s surface is rough; viewed under a microscope, it looks like a bumpy landscape. Yet that uneven surface closely resembles the contours of natural tissue, so cartilage cells see it as a natural environment to colonize.

“We’re tricking the body, so to speak,” Webster said. “It all goes back to the fact that the nanotubes are mimicking the natural roughness of tissues in the first place.”

Previous research has involved using a micron surface, which is smoother at the nanoscale. Webster said his team’s nanosurface works better than micron due to its roughness and because it can be shaped to fit the contours of the degenerated area, much like a Band-Aid.

The researchers also learned they could prod the cartilage cells to grow more densely by applying electrical pulses. Scientists don’t completely understand why electricity seems to trigger cartilage growth, but they think it helps calcium ions enter a cell, and calcium is known to play an integral role in growing cartilage.

The team plans to test the cartilage regeneration method procedure with animals, and if that is successful, to conduct the research on humans.

Webster’s cartilage regeneration studies parallel research he has done with bone regeneration and implants that was published last year in Nanotechnology. The principles are the same: Bone cells are more apt to adhere to a rough carbon nanotube surface than other surfaces and to colonize that surface. And tests by scientists in Japan and elsewhere have shown that electrical pulses stimulate bone cell growth.

The National Science Foundation, under the federal National Nanotechnology Initiative, funded the work.

Richard Lewis | EurekAlert!
Further information:
http://www.brown.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>