Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Finding clues for nerve cell repair

A new study at the Montreal Neurological Institute at McGill University identifies a key mechanism for the normal development of motor nerve cells (motor neurons) - cells that control muscles.

This finding is crucial to understanding and treating a range of conditions involving nerve cell loss or damage, from spinal cord injury to neurodegenerative diseases such as ALS, also known as Lou Gehrig’s disease.

Nerve cell regeneration is a complex process. Not only do nerve cells have to regenerate, but just as importantly, their specific and individual connections need to be regenerated also. The study, published recently in the Proceedings of the National Academy of Sciences, provides invaluable insight into these vital processes by understanding the mechanisms involved in normal development of selected types of spinal cord motor nerve cells.

Motor neurons are highly specialized. They have distinct characteristics and connect to specific muscle types in specific regions of the body. “These highly targeted nerve cell-to-muscle connections are determined in part by specific patterns of gene expression during embryonic development. More specifically, certain genes are expressed which tell the neuron what its properties will be, where to settle and which particular muscle to connect with,” says Dr. Stefano Stifani, neuroscientist at the Montreal Neurological Institute and lead investigator in the study.

When nerve cells develop they require characteristic patterns of gene expression in order to become motor neurons or another type of nerve cell called interneurons. Dr. Stifani and colleagues show that during development, motor nerve cells have to express certain genes that continually suppress interneuron developmental characteristics.

“We have identified a key factor, called Runx1, which controls the correct development of motor neurons in the upper part of the spinal cord. Runx1, a factor that controls gene expression, helps motor neurons to maintain their status by regulating the expression of specific genes. In doing so, it might also help motor neurons find their target muscles.”

Understanding the normal development and the highly specialized nature of nerve cells has important implications for understanding diseased or damaged nerve cells. For example, in ALS, the motor nerve cells that are involved in swallowing and controlling the tongue are often the first to degenerate. Knowing the specific patterns of gene expression of different motor nerve cells may help to explain why certain motor neurons are more susceptible to degeneration and help identify new targets for treatments.

This study can be viewed at It was funded by the Neuromuscular Research Partnership, an initiative of ALS Canada, Muscular Dystrophy Canada, and the Canadian Institutes of Health Research.

Sandra McPherson | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>